

Eckart Modrow

Computer Science

 with

ς Snap! by Examples ς

Version 2

© Eckart Modrow 2022

emodrow@informatik.uni-goettingen.de

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 International

License. It allows download and redistribution of the complete work with mention of my name, but no

editing or commercial use. In addition to the book, the listings of the described projects are loadable from

the following address:

http://emu-online.de/projectsOfCSwithSnap2.zip

The scripts are developed with Snap! 8.0.0.

Prof. Dr. Modrow, Eckart:

Computer Science with Snap!

Version 2

- Snap! by Examples -

© emu-online Scheden 2022

All rights reserved

If this book is helpful for you and you would like to express your appreciation in form of a donation, you can

do so at the following PayPal account:

emodrow@emu-online.de

Intended use: Snap! book

This publication and its parts are protected by copyright. Any use in others than legally permitted cases requires the prior

written consent of the author.

The software and hardware names used in this book as well as the brand names of the respective companies are generally

subject to the protection of goods, trademarks and patents. The product names used are protected by trademark law for the

respective copyright holders and cannot be freely used.

This book expresses views and opinions of the author. No guarantee is given for the correct executability of the given sample

source texts in this book. I assume no liability or legal responsibility for any damages resulting from the use of the source texts

of this book or other incorrect information.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Preface 3

Preface

This book, similar to its predecessor "Computer Science with Snap!" 1, uses a collection of programming

examples to explore the scope of the graphical language Snap!. It does not replace a textbook that conveys

CS content but shows how to use Snap! to apply CS methods. In this second version, some reflections on

computer science education, especially on the concept of objects and the relationship between infor-

mation, data, and visualization, are prefaced. Examples explaining their consequences can be found below.

Snap! in the present version 8.0.0 represents the next step in the development of graphical tools. The

current version was extended among other things by features in the area of object-oriented programming

(OOP), list operations and multiple stages as well as metaprogramming and thus meets all requirements up

to high school graduation and far beyond. Since also drastic improvements were reached with the working

speed and libraries for different ranges, e.g. with the pixel access, in the audio range or with the use of

external resources are available or can be developed easily new, hardly restrictions in the application areas

exist. If it must be, one can still use JavaScript functions for time-critical operations or extensions within

Snap!. The libraries contain numerous examples of this. 2

The selection of problems in the following chapters is relatively conservative, in some cases leaning closely

on existing computer science curricula, but also going beyond these. This is intended. I hope on the one

hand to "pick up" the teaching colleagues from traditional courses, and on the other hand to provide con-

texts that give meaning to the computer science content to be acquired from the learners' point of view.

This way should result in lessons that are very much oriented towards creativity, but also towards the teach-

ing of informatics concepts. The examples describe in detail the handling of Snap! from different aspects.

After a few considerations about didactics in this area, an introductory chapter follows, which explains how

to work with Snap! "on the fly". Then the next chapters illustrate the possibilities of the language. Sections

without direct application reference also follow. This compromise is due to space requirements because

extended concepts actually require extended problems. The examples are not arranged hierarchically, even

the second part contains rather simple ones. At the end of the script there are overviews of the methods

used in the examples as well as an index.

This book is a translation from German. Unfortunately, I do not speak English well, so it will be bumpy. I

apologize for that. Because all programs had to be changed as well, this task could only be done by me. Be

strong and hold it! Many thanks for the wonderful help of the DeepL3 translation program. I would proba-

bly never have finished without these.

I would like to thank Jens Mönig for his support - and for the results of his work. The learners will be thank-

ful!

I wish you a lot of fun working with Snap!.

Göttingen, 2022/9/15

1 E. Modrow, Informatik mit Snap, https://emu-online.de/ComputerScienceWithSnap.pdf
2 SciSnap!2 is discussed in more detail in https://emu-online.de/ProgrammingWithSciSnap.pdf
3 https://www.deepl.com/translator

Content 4

Content

Preface ΧΧΧΧΧΧΧ.ΧΧ.ΧΧΧ 3

Content ΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧ.Χ 4

1 Didactical Remarks ΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΦΦΧΧΧ 7

 1.1 Data, Information, Stories, and Visualizations ΧΧΧΦΧΧΧΧΧΦΧΧΧΧΧΧΧΦΧΧΧΧΧΧΦΦΧΦΦΧΧΦΦ 7

 1.2 Computer Science and Media Education ΧΦΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΦΦΧΧΧ 16

 1.3 Objects and Inheritance by Delegation ΧΧΦΧ..ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΦΦΧΧΧΧΦΦΧ 18

2 About Snap! ΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ.ΧΧ 19

 2.1 What is Snap!Κ ΧΧΧ.ΧΧΦΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧ 19

 2.2 What is Snap! not? Χ..ΧΧΧ 20

 2.3 The Snap!-Screen ΧΧΧΦΦΧΧΦΦΧΧΦΦΧΧΧ.ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 21

 2.4 Example for Experienced Users: Flu ΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΦΦΦΦ 23

 Writing own Methods ΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΦΧΧΦΦΦΦ 23

 Elementary Algorithms and Variables ΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΦΦΦΧΧΦΦΦΦ 25

 Create Objects ΧΦΦΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΦΦΦΧΧΦΦΦΦ 26

 Communicate with Objects ΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΦΧΧΧΧΧΦΦΧΧΧΧΦΦΦΦΦ 27

 Draw a diagram ΧΧΧΧΦΧΧΧΧΧΦΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΦΦΦΦΦ 29

3 Examples for "Data and Information"..ΧΧ....ΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΦΦΧΦΧΧΧΧ 31

 3.1 Examples for Communication in a Given Context ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΦΦΧΧΧΧΧ 31

 At the Greengrocers.ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΦΦΧΧΦΦΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧ 31

 Swimmers ΧΧΧΧ..ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΦΦΧΧΦΦΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧ 33

 Self Portrait ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΦΦΧΧΦΦΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧ 34

 In the Bistro ΧΧΧΧ..ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΦΦΧΧΦΦΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧ 35

 Searle's Chinese Room ΧΧΧΧ..ΧΧΧΧΧΧΧΧΧΧΧΧΦΦΦΦΧΧΦΦΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧ 36

 3.2 Examples for Communication with an Open Question ΧΦΦΧΧ...ΧΧΧΦΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧ 37

 Distance Learning Astrophysics ΧΧΧΧ..ΧΧΧΧΧΧΧΦΦΦΦΧΧΦΦΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧ 37

 Calculation of the Distances of the red and blue Pixels from the Center of the Galaxy ΧΧΧΦΦ.. 40

 WeizenbaumΩǎ Eliza Χ.ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΦΦΧΧΦΦΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧ 42

 3.3 Examples for Communication with a Clear Question ΧΧΧΧΧΦΦΦΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧ 44

 The Knowledge Society ΧΧ.ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΦΦΧΧΦΦΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧ 44

 Access to Databases ΧΦΦΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΦΦΦΦΧΧΦΦΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧ 46

 Access to JSON-Data ΦΦΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΦΦΧΧΦΦΧΧΧΧΦΧΧΦΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧ 47

 3.4 Communication without Human Partners ΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧ 49

 License Plate Detection ΧΧΧ.ΧΧΧΧΦΦΧΧΧΧΧΧΧΧΦΦΦΦΧΧΦΦΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧ 49

 Streaming ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΦΦΧΧΦΦΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧ 52

 Zero Knowledge Authentication Χ..ΧΧΧΦΧΧΧΧΧΧΦΦΦΦΧΧΦΦΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧ 54

4 Simple Examples ΦΦΧΧΧΧΧΧΦΧΧΧΧ..ΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΦΦΧΦΧΧΧΧ 56

 4.1 A Lawn Mower ..ΦΧΧΧΧΧΦΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΦΧΧΧΧΧ 56

 4.2 In the Aquarium ΧΦΧΧΧΧΦΧΧΧΧΧ..ΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΦΧΧΧΧΧ 57

 4.3 The Sun System ΧΦΦΧΦΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΦΧΧΧΧΧ 58

 4.4 Caesar Encryption ΧΧΦΦΧΦΦΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΦΧΧΧΧΧ 59

 4.5 A Color Mixer .ΦΦΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΦΧΧΧΧΧ 61

 4.5 Tasks ΧΦΦΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΦΧΧΧΧΧ 62

Content 5

5 Simulation of a Spring Pendulum ..ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΦΧΧΧΧ 63

6 Troubleshooting in Snap! ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΦΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΦΧΧΧΧ 67

7 Lists and Related Structures ΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΦΧΧΧΦΦΧΧΧΧΧ 69

 7.1 Sorting with Lists - by Selection ΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 69

 7.2 Sorting with Lists - Quicksort ΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧ 71

 7.3 Shortest paths with the Dijkstra method ΧΧΦΦΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧ 72

 7.4 Matrices and own Loops ΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 75

 7.5 Higher Level List Operations ΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 77

 7.6 Recursive List Operations ΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 80

 7.7 Hyperblocks ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ.ΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 81

 7.8 Fast Image Manipulation with Precompiled Blocks ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 84

 7.9 Tasks ΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 85

8 Object-Oriented Programming ΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΦΦΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧ 86

 8.1 Fiona and the Filing Cabinets ΧΦΦΧ.ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 89

 8.2 Magnets ΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 93

 8.3 A Learning Robot ΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧ 94

 8.4 A Digital Simulator .ΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧ 98

9 Graphics ΧΧ.ΧΧΦΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 104

 9.1 Line Graphics with Koch- and Hilbert Curve Χ.ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧ 104

 9.2 The RGB Color Cube ΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 107

 9.3 Printing and Cutting Costumes ΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 109

 9.4 Drawing on Costumes - with an own JavaScript Library ΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧ 110

 9.5 5ǊƛǇ tŀƛƴǘƛƴƎ ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 115

 9.6 Edge Detection ΧΧΧΧΧΧΧΦΧΦΧΧΧΦΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧ 117

 9.7 Tasks ΧΧΧΧΦΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 121

10 Image Recognition ..ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΦΧΧΧΧ 122

 10.1 A Barcode Scanner ΧΦΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧ122

 10.2 Project: Transit ProhibitedΗ ΧΦΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΦΧΧΧΧΧΧΧ 126

 10.3 Project: Face Detection ΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΦΦΧΧΧΧΧΦΧΧΧΧΧΧΧ 132

 10.4 Tasks ΧΦΦΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΦΦΧΧΧΧΧΦΧΧΧΦΧΧΧΧ 137

11 Sounds ..ΧΦΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧ 138

 11.1 Find Sounds ΧΦΦΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧ 138

 11.2 Process Sounds ΦΦΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΦΦΧΧΧ 138

 11.3 Make Music with Jens Mönig .ΦΦΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧ 140

 11.4 Project: Hearing Test ΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΦΦΧΧΧ 142

 11.5 Tasks ΧΧΦΦΦΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΦΦΧΧΧ 143

12 Project: Electrons in Fields ΧΧΦΧΧΧΧΧΧΧ.ΧΦΦΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΦΧΧΧΧ 144

 12.1 The Electron Source and the Experimental Setup ΧΧΧΧΧΧΧΧΧΧΦΦΦΦΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧ 144

 12.2 The Capacitor and the Electric Field ΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΦΦΧΧΧΦΦΧΧΦΧΧΧΧΧΧΧ 145

 12.3 The Helmholtz Coils and the Magnetic Field ΧΧΧΦΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧ 146

 12.4 The Electrons ΧΦΦΧΧ..ΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧ 147

Content 6

13 Texts and Related Topics ΧΧΧΦΧΧΧΧΧΧΧ..ΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧ 149

 13.1 Operations on Strings ΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧ 149

 13.2 Vigenère-Encryption ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧ 152

 13.3 DNA-Sequencing ΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧ 154

 13.4 Text Files, Server, and Frequency Analysis ΦΦΦΧΧ..ΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧ 157

 13.5 SQL Databases ΦΦΦΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ..ΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧ 161

 13.6 Tasks ΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧ 167

14 Computer Algebra: Functional Programming .ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧ 168

 14.1 Function Terms ΧΧΧΧ.ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧ 168

 14.2 Parse Function Terms ΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧ 169

 14.3 5ŜǊƛǾŜ CǳƴŎǘƛƻƴ ¢ŜǊƳǎ ΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 173

 14.4 /ŀƭŎǳƭŀǘŜ CǳƴŎǘƛƻƴ ±ŀƭǳŜǎ ŀƴŘ 5Ǌŀǿ DǊŀǇƘǎ ΧΧΧΦΦΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧ 176

 14.5 Tasks ΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΦΦΧΧΧΧΧ 179

15 Artificial Plants: L-Systems ΧΧΧΧΦΦΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧ 180

 15.1 L-Systems ΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧ 180

 15.2 Create the Drawing Instruction ΦΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧ 181

 15.3 The Stack Operations ΧΧ..ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ..ΧΧ 181

 15.4 Drawing the Plants ΧΧΧΧΧΦΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 182

 15.5 Tasks ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧ 183

16 Automata ΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 184

 16.1 Correct Mail Addresses ..ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧ 184

 16.2 Hyphenation: Kevin Speaks ΧΧΦΦΦΦΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΦΧΧ 186

 16.3 Coupled Turing Machines ΧΦΦΦ......ΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧ 190

 16.4 Cellular Automata: Iterated Prisoner's Dilemma ΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧ 195

 16.5 Tasks ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧ 201

17 Projects ΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΦΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧ 202

 17.1 LOGO for the Poor ΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 202

 17.2 SnapMinder by Jens Mönig Χ..ΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 208

 17.3 Connectivity: The World is Small ΧΦΦΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 214

 17.4 Evolution ΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 221

 17.5 Rate Websites: PageRank ΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ 225

 17.6 The Smart Scale ΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΦΦΧΧΧΧΧΧΧΦΧΦΦΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧ 231

 17.7 License Plate Recognition ΧΦΧ..ΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΦΧΦΦΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧ 237

How to Χ Κ ΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧ 242

LƴŘŜȄ ΧΧΧΧΧΧΧΧΧΦΧΧΧΧΧΧΦΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΧΧΧΧΧΧΧΧΦΦΧΧΧ 245

1 Didactical Remarks 7

1 Didactical Remarks

1.1 Data, Information, Stories, and Visualizations4

Modeling and implementing as well as reasoning and evaluating belong to the core of the process-related

competencies of school computer science. For teaching, their relationship is crucial: on the one hand, learn-

ers should independently create solutions to problems, for which they acquire technical knowledge and, of

course, also need training in the use of tools; on the other hand, the subject matter should enable discourse

on social and political issues based on the acquired technical competence. The relationship between the

three areas of tool use, technical issues and social impact determines the framework for general education.

Or to put it more sharply:

How much time should be spent on tool training, i.e. learning how to use the programming language and its

development framework, so that there is enough time for the students to solve problems independently and

to reflect on the results?

Without this time, the subject actually has no place in general education schools. In the following, we will

examine in a little more detail the information-oriented didactics of computer science prevalent in German-

speaking countries, the terminology used therein, and the implications for the choice of tool and its use.

The German Society for Computer Science (GI)

writes on the above competencies:

"The process of modeling is not only learning content,

but also a consistent method of computer science

teaching, although implementation is also indispensa-

ble to make the result of modeling tangible. Reasoning

and evaluation promote the learner's ability to com-

municate and to argue; without this area, dealing with

computer science systems is only intuitive or playful

and often determined by influences from media."5

The GI mentions as contents for the middle school the connection between information and data, different

forms of representation and operations on data and their interpretation in relation to the represented in-

formation. In the upper secondary school6, a distinction is to be made between characters, data and infor-

mation as well as between syntax and semantics and information is to be represented as data with data

types and in data structures. The current curricula largely adopt these specifications.

In addition to the contents, the sample tasks are particularly interesting for teachers, because from them

an idea of the intended teaching can be gained well. In the area considered, there are traditionally treated

topics from the field of data structures and databases, but almost nothing about information. This term

appears mostly only within word combinations (information technology, information society, ...), and it is

used contradictorily. If, for example, information is defined as "the semantics of a statement, description,

instruction, communication, or message" 7, then it is not quite clear to me how these semantics are to be

4 largely from Modrow, E., (2017). Ist der Informationsbegriff für die Schulinformatik hilfreich?
 LOG IN: Vol. 37, No. 1. Berlin: LOG IN Verlag. (S. 38-43).
5 Attempt of a corresponding translation from German by me. The same is true for the following translations.
6 may be high school
7 https://kultusministerium.hessen.de/schule/kerncurricula/gymnasiale-oberstufe/informatik

1 Didactical Remarks 8

"processed automatically by machines"8. It seems that teaching cannot be easily derived from a term that

is not sharply enough defined, even if it is used prominently in the competency domains. So, it is worthwhile

to look a little deeper into the meaning of information.

In information-centered computer science didac-

tics, the concept of information is usually ex-

plained using the diagram on the right 9. If one de-

rives content areas from it, one comes very fast

e.g. to the automatic processing and linking of rep-

resentations, thus to data. Information-centered

didactics just as quickly turns into data-centered

didactics when it comes to concrete teaching.

From the diagram it becomes clear that the con-

cept of information used in computer science di-

dactics has neither to do much with Shannon's in-

formation theory nor with the everyday equiva-

lence of information and data. The level of infor-

mation is hardly linked with computer science con-

tent, so that an implementation in teaching is dif-

ficult or requires breaks in content.

We therefore need precise and mutually compati-

ble definitions for the terms used. The knowledge

pyramid10 seems to me to be helpful for this,

which, in addition to data and information, also

contains the levels of knowledge and symbols. As

a starting point we choose the definition of

knowledge from Wikipedia11:

Knowledge is [...] understood as a collection of facts, theories, and rules available to persons or groups, which

are characterized by the greatest possible degree of certainty, so that their validity or truth is assumed.

Knowledge is thus bound to persons and consequently cannot exist within today's machines. There we find

data. Since knowledge cannot be complete and can even be wrong, gaps in certainty arise which can be

closed or reduced by information12.

Information is the subset of knowledge needed by a particular person or group in a specific situation and is

often not explicitly available.

This definition is similar to that from the GI Education Standards, "Information is the contextual meaning of

a statement, description, instruction, communication, or message.", but related to the knowledge modified

by the information. Information is also tied to individuals who recognize and evaluate the meaning of the

data. It is time and situation dependent. If a person receives a message twice, for example, the information

content is much smaller the second time, because the knowledge gap was already closed by the first infor-

mation. Information depends on the one hand on the data used for its transmission, but on the other hand

8 http://www.schulentwicklung.nrw.de/lehrplaene/upload/klp_SII/if/KLP_GOSt_Informatik.pdf
9 http://www.informatikstandards.de/index.htm
10 https://derwirtschaftsinformatiker.de/2012/09/12/it-management/wissenspyramide-wiki/
11 https://de.wikipedia.org/wiki/Wissen
12 https://de.wikipedia.org/wiki/Information

knowledge

information

data

symbols

1 Didactical Remarks 9

it also depends on the state of the receiver. The receiver pragmatically integrates information into his ex-

isting knowledge, links it with it - or not. Up to this point, there are no problems: Information is in the head,

data in the computer. The concept of information has no place on the machine level, to which we now turn.

Data is represented by symbols of the selected character set, which we can understand here as code. The

syntax of this representation describes the structure of this representation.

The above-mentioned concept of information is person related. Information can therefore not be seen

without the interpreting person, e.g. because the same data can represent completely different information

for different persons. Without their context, data lose the property of being information. They are reduced

to what they are without meaning: just data. In the knowledge pyramid model, the relationships are clear:

the receiver interprets the received data and tries to make sense of its semantics. This step occurs before

the linkage with his existing knowledge and largely independent of it. The interpretation depends on the

receiver and its state; it cannot be done solely based on the data. After the interpretation, the receiver

decides whether the meaning of the data represents information for him.

In my opinion, we should refrain from squeezing the concept of data into the information-centered scheme

as was done above. Data is a category in itself, bound to a physical representation. If, for example, an ocean

sonde measures temperatures, stores them, and then is lost, then the physically represented measure-

ments exist as data, even if, unfortunately, they never become information. If an operating system stores

system status in log files, then these data exist, even if they are never evaluated by humans. The definition

of data as representations of information confuses the above concept of information with the colloquial

one and leads to the unattractive situation that the meaning of information seems to be satisfied when

data and their structures are considered. But this is not true.

Our investigation has a simple result: the two lowest levels of the knowledge pyramid are accessible to

computer science. They are linked to the traditional content areas. The two upper ones are at least partially

intrapersonal, going beyond pure computer science. Like the area "computer science and society" they re-

fer to the meaning of computer science systems, this time not so much politically and socially, but related

to personal concern. The concept of information is part of the general educational contribution of school

computer science. This is not achieved if the treatment of data-related topics is equated with information-

related ones.

We want to work out the consequences of our considerations in four situations. For this we name the two actors

of the information transfer scheme shown above as Susi (sender) and Rudi (receiver) and reduce the labeling in

the scheme.

Case 1: Susi sends the message "Have arrived!" to Rudi.

The message can only have meaning for Rudi if Susi

and he are clear about its sense. Thus, if Rudi knows

that Susi is either on her way to Hanover or to her-

self, then he can interpret the message, even includ-

ing subtexts such as the missing "well" that might

suggest some complications. Susi, on the other hand,

knows that Rudi is waiting for her message and will

understand it in its brevity. She can express her infor-

mation through appropriate data. Susi and Rudi act

within a shared context that allows them to interpret

the message. Without this context this is not possi-

shared context

Communication in a given context

1 Didactical Remarks 10

ble, and therefore the context should also be included in the schema. However, it should not remain there,

because of course the classroom consequences are relevant, not the schematic ones. In the classroom, such

a context can be well realized through stories, as we are doing right now. Thus, not only suitable data struc-

tures and protocols result from a problem, but also the visualization of the situations, the connection of

the technical topics to the actors of the story, may it be the inhabitants of a farm, the story of the relation-

ship between Susi and Rudi, or the elements of a simulation. It should also be possible to manipulate the

data occurring in it, in order to be able to observe what is happening without effort and to control the

results. What one sees usually does not need to be explained separately. Both, the visualization of the con-

text and the data, should be easily possible in a development environment suitable for schools.

In this first case, the role of the computer system is completely secondary, clearly separated from the ex-

change of information. Susi could also have called out loud, sent a postcard, drummed the message or had

it transported by carrier pigeon. And vice versa, the ability of the computer system to encode texts appro-

priately, to transport the characters and to represent them again is completely independent of the infor-

mation transport. The task of the system is to mark the characters in such a way that they can be recognized

as text and represented by a suitable subsystem. This task is performed automatically, e.g. by marking the

data packets or the file on the basis of the established syntax. This has nothing to do with understanding.

All in all, the example suggested by the basic scheme is unproductive from an informatics point of view. In

my opinion, it should only be used if the information aspect is to be particularly emphasized in the lessons.

Case 2: Susi sends the message "mostly in the afternoon" to Rudi.

In this case, the common context, steeled in many

crises, is not supposed to be present because Susi

and Rudi are more or less random communication

partners in the network. Since Susi cannot arrange

and transmit appropriate data without this context,

Rudi must first establish the context. Therefore, the

communication process has to be started by him by

asking an appropriate question to Susi. The question

is interpreted by Susi in such a way that she can iden-

tify the desired information and convert it into data. In turn, Rudi must interpret the received data as an

answer to his question and evaluate it as the information he is looking for. This is represented in the schema

by double arrows. A lot can go wrong on both sides. Susi can misunderstand the question if it is not formu-

lated completely clearly. So, she can receive wrong information from Rudi and generate correspondingly

wrong answers, which can be misunderstood by Rudi again.

Again, the interesting things happen in the minds of the participants. We could discuss the importance of

non-verbal communication and address the role of emoticons, examine text comprehension in different

social or cultural contexts, or the need for video telephony. All of these are important school topics worthy

of discussion. What they have in common, however, is that we do not approach them through knowledge

of either the network protocols or the data structures used. The specialized informatics topics are irrelevant

to the role of information discussed here.

Communication with an open question

1 Didactical Remarks 11

Case 3: Susi sends the message α.ŜǊƭƛƴΣ .ŜǊƴΣ Bucharestά ǘƻ wǳŘƛ.

In this case, Rudi has asked his question so precisely

that Susi can evaluate it unambiguously. An interpre-

tation and thus a context suitable for understanding

is not necessary. But this also eliminates the role of

Susi as a person. She can be replaced by a computer

that answers the question as long as some syntax

rules are respected. Rudi can ask e.g.:

SELECT name FROM cities WHERE istCapital Ґ αyesά

AND ƴŀƳŜ ƭƛƪŜ α.҈ά [LaL¢ оΤ

The information is distributed very one-sidedly in this case. Rudi knows what information he needs. He

describes the data required to close the knowledge gap and retrieves it from an information system. Neither

on the way from Rudi to the system nor within the system there is even a hint of information. This arises

only in Rudi's head after he has received Susi's answer.

Since this third case corresponds very directly to communication in and with information systems, its ana-

lysis is important for learners. Whether they use digital assistants, consult databases, or use search engines,

they are expected to have an unambiguous description of the data needed to answer questions - whether

it suits them or not. While the systems may reflect understanding, or it may be attributed to them by the

users, they do not possess it. Awareness of this prevents overestimation of the answers received and un-

derestimation of the user's responsibility for his or her question. The more the role of the communication

partners is blurred, the less clear the evaluation of the results becomes.

Case 4: Rudi transfers his tasks to a program and goes swimming.

After Susi has already been replaced by an algo-

rithm, in this case by an SQL server, Rudi could also

get the idea that his tasks can be performed better

and faster by an algorithm. He claims that he can

describe his interpretation of Susi's data sufficiently

precisely by a program that extracts information

from the data and also immediately initiates any necessary actions. Is this true? We choose high frequency

trading in the banking system as an example. Susi transmits the current prices at her stock exchange, Rudi

evaluates the differences to his stock exchange and initiates corresponding buy or sell instructions.

Since Rudi, now as a machine, has no knowledge, also no knowledge gaps can be closed with him. Therefore,

it cannot be information in the defined sense. The algorithm Rudi has indeed emerged from the knowledge

of the person Rudi about the processes in stock exchange trading, but it does not represent this knowledge

completely, and above all, it does not link it with Rudi's remaining knowledge. The gaps in this knowledge,

which must be closed for concrete reactions in stock exchange trading, require the current stock exchange

values. For this purpose, the algorithm has variables, i.e. blanks, which are updated by Susi. Depending on

these values, Rudi runs through its sequences of instructions in different order and triggers the correspond-

ing actions. No interpretation is required for this. It is a pure automation process.

We can learn a few things from the four cases considered. The first two show that human communication

can be problematic, regardless of the medium used. The latter gets its meaning from the fact that it makes

communication possible and from its distribution. The concept of information is irrelevant to the technical

issues of data processing that arise in the process.

Communication with a clear question

Data exchange without human partners

1 Didactical Remarks 12

The other two cases are more interesting. The third describes quite well the roles of the user and the IT

system in information retrieval. The intelligence here lies entirely with the user. The user describes the data

required to generate the information sought and is thus also responsible for this description. If the descrip-

tion is imprecise, then he receives corresponding answers. If, as in case 2, the questioner asks a human

expert, the expert must infer the information sought from the context and, with the help of the IT system,

collect and transmit the data required to answer the question. He or she then also assumes responsibility

for its relevance. In case 3, the demands on the questioner increase considerably, because he must now be

an expert. There are no more excuses. His question is always evaluated, e.g., via statistical correlations or

by searching for matches to the question text verbatim in the network, but it is not understood. In order to

be able to sort the resulting data at all, the system must supplement the missing context, e.g., by evaluating

past questions or similar questions from others. The danger that this creates "echo chambers," for example,

which always generate data with the same tendency, is discussed as a current problem that endangers

democracy.

In this scenario, the information aspect leads to the question of what the user needs to know in order to be

able to ask appropriate questions; to know both about the subject of the question and about how the used

system works. The traditional subjects of school computer science are thus extended by an aspect that is

suitable for evaluating the relevance of these very subjects against the background of life in a society shaped

by computer science systems. Information-centered didactics understood in this way requires the develop-

ment of new teaching components to further develop the subject in the direction of current general edu-

cation. It links the subject content with its social significance. To be able to do this with reasonable effort,

it requires tools that, on the one hand, keep the time required for tool training small, i.e., free up time for

other things, and, on the other hand, give space to the context in the form of stories in addition to an

appropriate consideration of the specialized topics.

The fourth case describes the transfer of human tasks to information technology systems. People can de-

scribe from their knowledge and experience how to react in different situations. Machine learning methods

then transfer descriptions of this knowledge into suitable (data) structures. Within the framework of these

structures, the automated systems react in a manner comparable to humans, usually even faster and more

reliably. But what happens if the description is incomplete or new situations arise? Since the evaluated data

retain their data character throughout the entire process, i.e., they never become information, their se-

mantics are also never made accessible. If they mean something different than actually intended, then no

one understands this change in meaning because it cannot be linked to existing knowledge from perhaps

completely different areas. (By the way: the use of neural networks does not change this assessment). In

these cases, the clear separation of data and information makes it possible, for example, to discuss respon-

sibility for the consequences of automation (for example, in autonomous driving) and to explore the ethical

boundaries (for example, in the selection of training data). The information aspect creates clarity in argu-

mentation and prevents socially relevant issues from being clouded by a retreat to technical content. It

enables political discourse on the position of informatics systems.

Information-centered didactics has led to a somewhat inflationary use of the term information in almost all

areas of school computer science, at least in German-speaking countries. It loses its sharpness and espe-

cially its function to give orientation in the planning of lessons. The traditional content areas, such as data

and data structures, are not harmed by the fact that they now have the additional claim of also taking the

information aspect into account. But it reduces the chance to accentuate teaching of computer science in

the direction of its general educational function. If, on the other hand, we reduce the concept of infor-

mation to its original meaning, then we expand the subject canon of school computer science to include

socially relevant aspects that can have a direct impact on the planning of the curricula.

1 Didactical Remarks 13

As an example, let's look at the concept of the "knowledge society", from which it is sometimes concluded

that knowledge no longer needs to be acquired if it is available to everyone "on the Net". On the basis of

our considerations, we can immediately see that it is not that simple after all. In the net we do not find

knowledge, but data. Instead, there are a number of questions that need to be clarified before information

acquisition in the knowledge society can really work out:

¶ What basic framework of knowledge do learners need to have in order to be able to identify their

knowledge gaps at all?

¶ What competencies do the learners need to acquire in order to be able to accurately describe the data

required to close the knowledge gaps? Can they even describe what they don't know?

¶ What knowledge about the informatics systems providing the data do learners need to acquire?

¶ How do learners learn to assess the relevance of the data provided relative to their question?

¶ What happens if the answers are "colored", e.g. adjusted to the questioners?

¶ What data does the answering IT system obtain from the questions? What information can be derived

from it?

The concept of information thus proves to be quite clearly effective in the area of "computer science and

society". We should leave it there. In my opinion, this restriction does not limit its importance. On the con-

trary: if a term can clearly accentuate the orientation of a school subject, that is not little. It is a lot.

If the concept of information is not very productive with respect to data, but helpful with respect to the

area of computer science and society, the meaning of the content area "data" must follow from itself -

otherwise it will be difficult to justify the existence of this area from a general education point of view.

Among the mentioned content areas of this domain, besides the somewhat interspersed concept of infor-

mation, the classical topics of a standard area of computer science can be found: the area of algorithms

and data structures. It seems to me that computer science structures its contents differently than current

computer science didactics for a good reason: obviously there are not too many points of contact between

data and information, but there can be no separation between algorithms and data structures, because the

other area is indispensable for the one. This also becomes clear in the GI demand for "modeling and imple-

mentation as a continuous method". Even if the scientific structuring of the content areas is not a manda-

tory requirement for didactics, it should be taken into account, because it is certainly not senseless.

The question is somewhat different: Which parts of the basic scientific curriculum are relevant for general

education-oriented didactics at a certain point in time? Or still differently: If "in former times" certain tech-

nical questions were also important for schools, because the technical and professional development had

only reached a certain state at that time, then this does not yet result in a compelling justification for the

relevance of these technical topics at a later time. Linear data structures (stack, queue, ...) may serve as an

example: In universities they are still relevant and there closely related to the algorithms working on them.

In school they had their importance, because without their implementation advanced student work could

hardly be realized. With the tools available today, however, it must be asked whether the implementation

of these structures is still necessary. If lists are available that can be visualized well, then the linear struc-

tures actually only differ in the place of their access, the beginning or end of the list - and this can be seen.

It is intuitively clear what causes which operation.

Now, in the area of schools, it hardly makes sense to consider the processing of data as a purpose in itself.

What is required is again a context from which the need for its transformation arises. Data thus acquire a

meaning; their processing takes place for a specific purpose. Without this context, the acquisition of com-

petencies from the area of "reasoning and evaluating", which is central to the justification of the school

subject computer science, is also hardly realizable. The context is therefore to be taken seriously. It is of

equal importance to the subject. Pseudo-contexts, which only serve to get to the subject content as quickly

1 Didactical Remarks 14

as possible, are rather counterproductive. If the context is obviously meaningless, then this "nonsense" is

easily transferred to the subject, which consequently also appears meaningless to the learners.

Data originates from the context and flows back into the context in a modified form. Physical computing

may serve as a prime example, where sensor values are collected by the computer system and used to

generate actuator control data. ("When it rains, the windows are closed." "When the train comes, the barrier

is better down.") The example also shows that simple numerical values can have their meaning as data.

However, they do not have this meaning "per seά ōǳǘ gain it within the given framework. The example also

shows that the learners do not necessarily have to solve tasks that the teacher has set but can work on

problems that they themselves have derived from the context. They do not work on exercises, but act as

problem solvers, in this case as small constructors who make life easier for other people or prevent catas-

trophes. The transformation of data is not an end in itself, but a means on the way to a goal they have set

themselves.

The context does not necessarily have to be real (as in physical computing) or simulated (through the mul-

timedia properties of visual programming languages). It can also be a story from which the informatics

question arises. Computing a certain percentage according to a given procedure need not motivate every-

one. But if one asks the question about the contribution of e.g. Germany to the damages of a hurricane in

a completely different place13, then a single number gets an immense meaning, even if we can determine

it only rudimentarily. Even the recognition of a digit in a picture becomes interesting for learners if, for

example, the problem of recognizing car license plates arises from an exciting story or a current case. No

matter how the context is chosen: its importance for the motivation of the learners requires that the de-

velopment environment can take it into account, through graphics, sounds, animations. To ensure that this

representation does not displace the actual subject content, the context representation must be very easy

to manage.

Structured data of the same type usually occur in direct form as strings or images. Therefore, there are

separate data types for them. Linear data sets occur either as sequences of input/output values (data

streams) or as character strings which are transformed for certain purposes (cryptography, ...). Both possi-

bilities show that the embedding in a meaning-giving context follows as if by itself. In the case of images,

the required transformation usually follows directly from the problem definition. Image enhancement, color

changes, edge detection and consequently object detection, classification of images, etc. may serve as ex-

amples. Since the representation of these data sets as list-like structures or tables is intuitively clear, their

algorithmic treatment is usually not a big problem. The situation is somewhat different with the control of

the developed algorithms. Since these structures can contain a lot of data, the ease of visualizing them,

from which the current state of the data set can be seen, is crucial for learners. In schools, therefore, it is

not so much the algorithmic components (which are always present) that matter, but the visualizability of

their effects.

13 Friedericke Otto, World Weather Attribution, https://wwa.climatecentral.org/

1 Didactical Remarks 15

Direct "data processing" no longer plays a major

role in schools because special tools such as data-

base systems have taken over the partial tasks. The

data are therefore largely elements of models in

which they describe the parts of the systems and

represent interrelationships. Together with the de-

mand for a context that seems meaningful to the

learners, it follows that the subject area "data"

should be predominantly embedded in a subject

area "modeling".

1 Didactical Remarks 16

1.2 Computer Science and Media Education

In schools and universities, the teaching of media competence is being hotly debated as part of the " digi-

talization offensive". Since the term " digitalization" obviously concerns computer science, the latter should

take part in the discussion. Teaching institutions need to think carefully about what exactly their contribu-

tion to overall education is. On the one hand, children and young people gain knowledge and experience

also - and in many areas predominantly - outside these institutions; on the other hand, the goals of "edu-

cation" and "training" should be sharply distinguished. Young people do not need to master the use of

current professional tools; they can safely leave that to adults. But they must be prepared to take over their

role with future tools.

It is and has often been argued that learners need to learn how to use modern media in order to lose their

"fear of them". I think this is absurd. Firstly, children and young people are normally not afraid of media,

they are curious about them. Secondly, they learn how to use them quickly and easily from others and

through use. The fear is more on the part of the older ones, who have not grown up with this technology

and therefore feel insecure about it. Those who are currently older should remember that in their youth,

those who were older at the time discussed how they could be gently introduced to mouse-controlled in-

terfaces in order to take away their fear of them. We can learn from this that handling current technology,

such as smartphones, is learned along the way, but that this obviously does not automatically lead to using

future technology in the same uncomplicated way.

Conclusion: Learners must be enabled to understand the fundamentals of future technologies and to acquire

the skills to use them. For this, they need general knowledge of the technical fundamentals of information

technologies, but not specialized knowledge of the current technology.

It goes without saying that media use is not the same as media consumption. The passive use of media of

whatever kind, e.g., simply "gawking," cannot be the goal of the educational system. When we deal with

media, they must occur in a context that activates learners.

Conclusion: The learners must be enabled to select and use tools, e.g. for the creation of media, depending

on the problem. To do this, they must learn to solve problems independently.

Education for independent problem-solving is usually not seen as a central task, at least in schools. Creative

subjects such as art, music and sometimes languages at least sometimes strive for this. Mostly, however,

the focus is on good learning. Computer science now provides tools that can be used to realize, test, and

improve one's own ideas even in a relatively rudimentary form. It would be a missed opportunity if the

subject did not realize creative teaching for the learners. However, this will only work if the teachers them-

selves have experience in independent, creative problem solving and if they trust the learners to do so. If

the teachers have only " well learned" the informatic contents, then it will not work out with the creativity

in the lessons. If independent problem solving is to be aimed at in schools, then this should and must also

have consequences for teacher training at universities.

Conclusion: Teachers must be enabled to plan and implement creative lessons. Opportunity and space must

be given for this in their own training.

Modern media such as social networks have changed social life, communication, etc., in some cases pro-

foundly. The consequences can hardly be foreseen while this process is still ongoing. Much less were they

foreseeable before it was started. I would therefore consider it a complete overload for teachers to demand

that they deal with the actual social consequences of IT systems, which include the effects of digital media,

in the classroom. That would also not be effective, because looking at the consequences that have already

occurred is necessarily backward-looking. What can be demanded, however, is to show that the use of

1 Didactical Remarks 17

information systems has social consequences and that these depend very much on how the systems are

designed. Different problem solutions therefore have different consequences - and vice versa: If certain

consequences are undesirable, then it will usually be possible to find another technical problem solution.

Conclusion: The learners must experience that there are almost always different solutions to a given problem.

They should think about their effects, which are of course not conclusive. They learn that these effects are

not given but can be shaped.

What does this have to do with Snap!

Graphical programming environments like Snap! not only contain the algorithmic components but are em-

bedded in a media environment that not only allows, but requires the use of graphics, sound, If a prob-

lem is being worked on, then cameras and graphics programs can and should be used to create the appro-

priate costumes and allow costume changes that visualize the current state of the system. Sound programs

allow to comment on the process itself, to edit and insert music or to design it by oneself. And, of course,

the results must be presented, because product pride is an important motive for dedicated work and inter-

est in the results of others is great. Snap! supports just the presentation aspect by the new possibility to

switch between several stages.

Snap! allows algorithmic problem solving on a high level, but it does not only allow the analytical approach,

but also the playful, the experimental, the creative, ... What it does not allow is passivity, because nothing

happens by itself. Media are essential system components, e.g. for visualizing the results - and they can also

be the results themselves. Snap! therefore offers the chance to construct model solutions to current prob-

lems, e.g. also and especially in the media field. Through the self-created algorithmic framework of the

model, understanding for the observed processes in the real model emerges. The experience of being able

to gain this knowledge oneself enables the active, critical examination of future technology. The examples

in this book are intended to show that this is possible in many areas with the aid of elementary methods.

They are intended to encourage people to get started themselves. εζηθ

1 Didactical Remarks 18

1.3 Objects and Inheritance by Delegation

If somewhat more extensive problems are processed, then the number of subproblems to be solved also

grows. Often, these can be combined into groups that can be assigned to concrete objects. An important

aspect of this way of working is that teamwork based on division of work can be realized well in this way,

in which the different teams create objects that solve subtasks. The object-oriented way of working is often

realized by creating classes that describe the behavior of a group of similar objects. Instances (exemplars)

of these classes are then created to solve the problems. The approach is largely top-down and requires

some abstraction. More suitable for beginners is the prototype-based approach used in Snap!, in which an

example, the prototype, is created for each group of objects, which is developed and tested step by step. If

one is satisfied with the result, then further objects of this kind are derived by duplication (cloning) of the

prototype.

To object-oriented programming the concept of the inheritance belongs centrally, which can be realized by

classes or by delegation. In the original article of Lieberman14, which describes the prototype-oriented pro-

cedure with the delegation already very early, objects are understood as embodiment of the concepts of

their class. Thus, the elephant Clyde stands there for

everything, the viewer understands by an elephant. If he

imagines an elephant, then it is not the abstract class of

elephants that appears in his mind's eye, but Clyde. If he

speaks about another elephant, here: Fred, then he de-

scribes him like this: "Fred is just like Clyde, except that

he is white.έ

What does this approach mean for the learning process? If the learner knows only one copy of a class (here:

Clyde), then the prototype describes his knowledge completely, an abstraction is senseless for him. If he

then gets to know other copies and describes them by modifying the original, i.e. replaces some methods

by others, changes attributes and adds new ones, then the image of the class itself slowly emerges as an

intersection of the common properties. Only now the abstraction process is comprehensible to him and,

after a few attempts, viable itself. Delegation is thus a method that maps the learning process itself by

creating prototypes instead of classes. In Snap! we work predominantly according to this principle, which

is presented in detail below.15

In Snap! prototypes are created as sprites and equipped with the desired attributes and methods. Once

their behavior has been sufficiently tested, clones can be created dynamically using the clone block. For

each sprite it can be displayed from which sprite it was derived (parent) and which children it has (chil-

dren...). The parent property can also be set and/or changed afterwards, so that the system of dependen-

cies is dynamic. If the program stops, then all dynamically created clones are deleted, which is beneficial

A clone initially inherits (almost) all local attributes and methods of the parent object. This is indicated by a

"paler" representation in the palettes. If a sprite overwrites inherited attributes or methods, then these

replace those of the prototype as usual. If you delete the overrides again, the inherited attributes or meth-

ods appear in the palettes.

14 Lieberman, Henry: Using Prototypical Objects to Implement Shared Behavior in Object Oriented Systems,
1986, http://web.media.mit.edu/~lieber/Lieberary/OOP/Delegation/Delegation.html
15 If you absolutely want it, then you can also implement a class system.

2 About Snap! 19

2 About Snap!

2.1 What is Snap!?

Snap! 16 was (and is) developed by Brian Harvey and Jens Mönig for the Beauty and Joy of Computing pro-

ject17 and is freely available on the Internet. Since the system runs in the browser, it does not require any

installation and works on almost all devices18. Its interface and behavior are similar to Scratch19, another

free programming environment for children developed at MIT. However, the implemented concepts go far

beyond that: here the roots lie with Scheme, a dialect of the LISP language, which has long been used at

MIT20 as a teaching language in the education of computer science students. It is introduced, for example,

in a famous textbook by Harold Abelson and Gerald and Julie Sussman21. Snap! is thus a fully developed

programming language, which consequently can be used in (almost) all problem areas. For most of them it

is now also sufficiently fast. This is not self-evident and was a shortcoming of its predecessors. Graphical

languages are largely concerned with controlling the state of the system and thus allowing, for example,

infinite loops to be interrupted or access errors to data structures to be "tolerated". This leaves little time

for the actual program execution.

Snap! is a graphical programming language: Programs (scripts) are not entered as text, but are composed

of tiles. Since these tiles can be put together only if this makes sense, "wrongly written" programs are largely

prevented. Snap! is therefore largely syntax-free. Nevertheless, it is not completely free of syntax, e.g.

because some blocks can process different combinations of inputs: if you put them together incorrectly,

errors can occur. However, this is more likely to happen with advanced concepts. If you use them, you

should know what you are doing.

Snap! is exceptionally "peaceful": errors do not cause program crashes but are indicated by the appearance

of a red mark around the tiles that caused the error - without dramatic consequences. The used tiles, which

include the newly developed blocks, are always "alive". They can be executed by mouse clicks, so their

effect can be directly observed. This makes it easy to experiment with the scripts. They can be tested, mod-

ified, disassembled into parts and reassembled in the same or different ways. This gives us a second ap-

proach to programming: in addition to problem analysis and the associated top-down approach, there is

the experimental bottom-up construction of subroutines that are assembled to form an overall solution.

Snap! is descriptive: both the program sequences and the assignments of the variables can be displayed

and tracked on the screen if required. This makes it ideal for simulations, for example.

Snap! is extensible: by the implemented LISP concepts new control structures can be created, which work

e.g. on special data structures.

Snap! is object-oriented, even in different ways: Objects can be created both by creating prototypes with

subsequent delegation and in different ways via classes.

16 https://snap.berkeley.edu/snap/snap.html
17 https://bjc.berkeley.edu/
18 Meant, of course, computers, tablets, smartphonesΣ Χ
19 http://scratch.mit.edu/
20 Massachusetts Institute of Technology, Boston
21 Abelson, Sussman: Struktur und Interpretation von Computerprogrammen, Springer 2001

2 About Snap! 20

Snap! is first-class: all structures used are first-class, i.e. can be assigned to variables or

used as parameters in blocks, can be the result of a function block or the content of a data

structure. Furthermore, they can be unnamed (anonymous), which is important for the

implemented aspects of the lambda calculus, the basis of LISP. Consequently, the logo of

Snap! contains the same proud lambda that used to be found in the hair of Alonzo, the

mascot of BYOB.

2.2 What is Snap! not?

Snap! is not a production system. It is a learning environment that was developed, among other things, on

behalf of the U.S. Department of Education as part of CE21 (Computing Education for the 21st Century) and

is also intended to reduce the dropout rate in technical subjects. It is a tool for implementing and testing

informatics concepts in an exemplary manner.

Snap! is primarily used for work in the field of algorithms and data structures, but essential areas of com-

puter science such as access to files or hardware can also be embedded in the browser environment, some-

times via libraries. The microphone and the camera of the computer are directly addressed, and the built-

in url block allows quite simple accesses to the Internet and thus, for example, via intermediate servers, the

use of databases or external hardware

Since the code of Snap! is freely available, there are different modifications. Whether this is a blessing or

a curse remains to be seen. In any case, there are now specialized versions e.g. for the areas of physical

computing, robot control or work in the network, so that corresponding simple examples of the first ver-

sion of this script have been deleted.

Alonzo

2 About Snap! 21

2.3 The Snap! - Screen

The Snap! screen consists of six areas below the menu bar22.

¶ On the far left are the command tabs, which are divided into the categories Motion, Looks, Sound, and

so on. If you click on the corresponding button, the tiles of this section are displayed below the button.

If they do not all fit on the screen, then you can scroll the screen area in the usual way. If you want, you

can display the tiles of all sections one below the other.

¶ To the right of this, i.e. in the center of the screen, the name of the object currently being edited - called

a sprite in Snap! - and some of its properties are displayed at the top. You can - and should - change the

default name of the sprite here.

¶ Below this is an area where, depending on the tab, the sprite's scripts, costumes and sounds can be

edited or created.

¶ At the top right is the output window in which the sprites move: the stage. This can be resized using the

buttons above it, the entry in the settings menu (Stage size ...), a corresponding command block or by

simply "dragging" with the mouse. If you set the checkmark in front of the variable name in the Variables

palette, the variables will be displayed on the stage, if necessary, with a slider that allows you to easily

change the values. Since variables can contain anything (numbers, texts, lists, sprites, programs, ...), the

state of these variables can be visualized at any time.

¶ At the bottom right, the available sprites are displayed. If you click on one, the center area changes to

its scripts, costumes or sounds - depending on the selection. To the left of the sprites, an icon of the

stage, or, if available, the icons of several stages are shown. You can also switch between them by click-

ing on them. Each stage has its own project, which is independent of those of the other stages. However,

it is possible to exchange data between the projects.

22 The layout of the areas can be changed using .

2 About Snap! 22

¶ The menu bar itself offers the usual menus for loading and saving the project and individual sprites on

the left. Furthermore, several settings can be made. One possibility is to set the language. I still recom-

mend staying with the English version, because this way you can distinguish your own blocks, e.g. named

in German, from the native ones at first sight.

¶ On the far right we find the green flag known from Scratch, with which several scripts

can be started simultaneously when using the corresponding block. The pause button

next to it pauses everything and the red button ends all running scripts. Individual scripts or tiles can be

started by simply clicking on them.

2 About Snap! 23

2.4 Example for Experienced Users: Flu

Level: high school Materials: Flu

The example simulates the spread of a flu epidemic under different conditions. It serves as a quick overview

of the main possibilities of Snap! and is intended especially for experienced programmers. Beginners

should rather read the next chapters first.

The question is what proportion and

which particular groups of people in a

population should be vaccinated if the

spread of an influenza epidemic is to

be stopped. The question is not so

easy to answer, because the result de-

pends on various parameters: the

probability of infection indicates how

likely it is that a healthy person will be

infected when in contact with a sick

person, the seroconversion time is the time between infection and immunization, the numbers of healthy

and sick persons at the beginning of the simulation determines the number of contacts between them, and

the type and number of multipliers indicates how many persons in the population have particularly many

contacts or contact with particularly widely separated groups. If one of them becomes infected, for exam-

ple, the disease is quickly carried to distant areas. Since contacts, infections, etc. are random, we will only

obtain viable results if we run the simulation several times with the same parameter values in each case -

and then it still remains to discuss which values represent "results" in the sense mentioned at all. The topic

is therefore perfectly suited for a small classroom project. A "steering group" develops the superordinate

scripts, which we want to assign to the Stage here. It coordinates the distribution of tasks with the other

groups. The other groups develop auxiliary methods as well as the prototypes Person and Graph, each

with its own stage, which are almost independent of each other, and think about the data exchange.

Writing own Methods

It is often necessary to get rid of the created clones of a prototype

without terminating the program. We achieve that here by a new

local method delete all clones of <a prototype> of the stage.

This is a command block, that is, a command that (here) has a

parameter. (Function blocks are called reporters in Snap!) New

blocks are written in the block editor, which is invoked with the

Make a block button we find in the palettes or by right-clicking

on the script layer and there in the context menu. First, we spec-

ify the method name, with spaces and special characters if de-

sired, select the type (Command, Reporter or Predicate) and

specify whether it is a global (for all sprites) or local (for this

sprite only) method. We can also choose the palette in which the

block will be included and the color it will be given.

