
Eckart Modrow

Programming

 with version 2

© Eckart Modrow 2022

emodrow@informatik.uni-goettingen.de

This work is licensed under a Creative Commons attribution - Non-Commercial - Share Alike 4.0 International Li-

cense. It allows download and redistribution of the complete work with mention of my name, but no editing or

commercial use. The scripts are developed with Snap! 7.3.1 Build Your Own Blocks.

The examples and this script can be loaded at

http://emu-online.de/ SciSnap2Examples.zip or

http://emu-online.de/ProgrammingWithSciSnap2.pdf

SciSnap!2 itself at

https://snap.berkeley.edu/snap/snap.html#present:Username=emodrow&ProjectName=SciSnap!2&editMode

Prof. Dr. Modrow, Eckart:

Programming with SciSnap!2

© emu-online Scheden 2022

All rights reserved

If this book is helpful for you and you would like to express your appreciation in form of a donation, you can do so

at the following PayPal account:

emodrow@emu-online.de
Purpose: SciSnap!-book

This publication and its parts are protected by copyright. Any use in others than legally permitted cases requires the prior written

consent of the author.

The software and hardware names used in this book as well as the brand names of the respective companies are generally subject to

the protection of goods, trademarks, and patents. The product names used are protected by trademark law for the respective copyright

holders and cannot be freely used.

This book expresses views and opinions of the author. No guarantee is given for the correct executability of the given sample source

texts in this book. I assume no liability or legal responsibility for any damages resulting from the use of the source texts of this book

or other incorrect information.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://emu-online.de/%20SciSnap2Examples.zip
http://emu-online.de/ProgrammingWithSciSnap2.pdf
https://snap.berkeley.edu/snap/snap.html#present:Username=emodrow&ProjectName=SciSnap!2&editMode
http://creativecommons.org/licenses/by-nc-sa/4.0/

Preface 3

Preface

The development of computer tools, especially in the field of programming languages, has made rapid progress in

recent decades. For example, graphical programming languages have been developed that allow beginners to

work on small projects on their own very quickly without having to worry about syntax quirks, etc. If only a limited

time is available for learning programming, this is a decisive step forward, because the relationship between the

practice of using the programming tool (the programming environment incl. language) and the content work prac-

tically reverses. Accordingly, tools like Scratch 1 from MIT or Snap! 2 from UCB are used successfully in schools

and universities.

So, although a lot has happened with the tools, the content in programming courses looks surprisingly unchanged.

Simple "tasks" are set, which largely serve only to practice the dealing with algorithmic basic structures and data

structures, without going beyond that. In addition, there are often working techniques that make sense for large

projects with many participants, but which are hardly experienced as helpful by the beginners. An example may

be the drawing of Nassi-Shneiderman diagrams 3 (structograms), which sometimes have to be made before scripts

are developed, e.g. in Scratch – even though graphical languages illustrate the algorithmic structure through their

blocks themselves. That is exactly what they were developed for (among other things). One can imagine the en-

thusiasm of the learners, e.g. if they have to add some numbers and calculate the tax to be added or as a "funny

interlude” to replace all "r" in a text with "l" and thus produce "Chinese" texts. Consequently, the "successes" in

programming lessons are also largely unchanged. Because independent problem solving with the resulting product

pride is as rare as meaningful applications that explain parts of the learners' world, often only those learners feel

addressed who are "interested in computers" anyway. The others, i.e. most of them, also meet the requirements,

but they rightly ask themselves: "Why should I learn this, what’s for?"

The objection that you can only treat elementary examples with beginners is not to be dismissed. Although with

graphical languages there is much more time for actual problem solving, the algorithms that are developed inde-

pendently at this stage of learning are fairly simple. They usually involve a sequence of commands, often within a

loop, that lists some alternatives in sequence: "If this is the case, then do so." If such scripts are nevertheless to

provide meaningful experiences, then the elementary commands used – a few – must be "powerful," and it is

necessary for the teachers to be imaginative in order to teach "interesting" problems at an elementary level.

This is not a new insight: In the days of the Nassi Shneiderman diagrams, it was a challenging task to draw an

oblique line on a technical device such as a screen or printer. Since corresponding graphics commands were de-

veloped, it has been a trivial problem that is dealt with one instruction. Just a few years ago, measuring with

computers was something for specialists. Today, almost every school has a set of sensor boards that children work

with. It is actually hard to understand why the new possibilities hardly appear in the field of algorithmics. A few

random numbers are still sorted or words are converted to capital letters instead of "digging" into sets of data

using similarly simple scripts or searching books or images for characteristic structures. To be precise: if charac-

teristic features such as means, standard deviations, ... grouped by characteristics such as the place of residence,

gender or occupation of the parents can be determined in a data set with one command, there is enough space in

the rest of the algorithm e.g. searching for correlations or graphing the relationships, also with one or a few

1 https://scratch.mit.edu/
2 https://snap.berkeley.edu/
3 This type of diagram was developed in 1972. For chronological classification: one year later, the first microprocessor
was launched with the Intel 4004. This may speak for the timeless importance of structograms, but it may also indi-
cate that changes could be considered after 50 years.

https://www.google.com/search?rlz=1C1CHBF_deDE715DE715&sxsrf=ALeKk01TjD7l3NXW0kI9vKVxfCQhGdlW5Q:1612545881260&q=Nassi-Shneiderman-Diagrammen&spell=1&sa=X&ved=2ahUKEwiqtL7DodPuAhWOlhQKHSz0BkwQkeECKAB6BAgOEDU

Preface 4

commands. Above all, however, these possibilities can raise current and obviously important questions, the an-

swers of which concern the learners themselves.

1. A goal of SciSnap! is therefore to provide appropriate libraries in various fields such as image processing,

diagramming, mathematics, data analysis and databases, graphs or neural networks.

A (unfortunately) current example: economic, geograph-

ical, social or content relationships can be represented by

graphs. If appropriate commands are available, then the

creation and representation of such a (here: random)

graph in SciSnap! requires only three commands: "con-

figure a sprite, create n nodes, and then n randomly se-

lected edges" 4. If we consider the links as contacts be-

tween persons, then the question is how many intermedi-

ate contacts can spread infections during pandemic times.

Thus, we compute the shortest paths between the nodes:

"For each node: compute the shortest paths to all other

nodes and enter them in a list". For these results, we cal-

culate the mean values per node in a simple loop, and

from this we calculate the overall mean value. 5 Algorith-

mically, it's a typical beginner's problem: "run through a

simple loop". In terms of content, we have found ways to

discuss a current social problem, "small worlds" 6, social

networks, friendships or customer-supplier relationships.

Teaching has become more relevant.

Starting with Snap!7.0 there is the possibility to create or

delete additional palettes. This significantly increases the

overview. Nobody will need all of the eight partly exten-

sive libraries of SciSnap!2 as well as the category my own

blocks at the same time. Nevertheless, I did not split them

up further, because you can switch off the ones you don't

need with one click (Remove a category... from the file

menu). However, the first three (SciSnap! globals, Math

tools and Data tools) as well as some new blocks in the

standard palettes should not be omitted.

It's not the goal of SciSnap! to present ready-made applications. Rather, it provides powerful commands that can

be used to build applications. An example of this are the "Sketchpads": costumes for arbitrary sprites or the stage,

on which sketches can be created quickly. Function graphs, images, charts, or histograms can be created with a

few commands, and scales are added—and deleted when it gets too crowded. This makes it possible, for example,

to illustrate mathematical relationships, such as showing the effect of operators on complex numbers. It is hoped

that these examples will encourage learners to create even other, perhaps better, applications that use algorith-

mic methods in different fields.

2. SciSnap! should be usable both as a tool and as a development environment.

4 Pseudocode: configure GraphPad, add 100 vertices, add 100 edges
5 Pseudocode: means=list, for i=1 to 100(add mean of row i of distances to means), mean=mean of means
6 https://en.wikipedia.org/wiki/Small-world_experiment

Preface 5

Snap! is not only a fantastic development tool, but it is based on a fantastic concept. As a graphical reimplemen-

tation of MIT’s Scheme 7 language, based on the "CS Bible" "Structure and Interpretation of Computer Pro-

grams"8 by Abelson et.al., it is conceptually far superior to many of the most common programming languages.

Although it's not very fast, Snap! is running fast enough to be used fluidly in educational settings. Its built-in

visualization capabilities make it ideal for simulations. The prototypical inheritance used makes basic computer

concepts directly tangible. Nevertheless, it is largely underrated, probably because of the similarity of its interface

to Scratch. I hope, therefore, that making libraries available that are intended more for projects in high school or

in the first semesters of college will have a positive effect on its distribution to these age groups. Let’s see...

3. SciSnap! is intended for higher grades of school as well as for undergraduate study.

This script contains a description of the possibilities of SciSnap! as well as some examples explaining the intended

use. The libraries are based on the experience with “Machine learning with Arthur&Ina 9” and the Snap!-fork

SQL-Snap! 10. They were supplemented by numerous mathematical operators, SQL, sketchpads, neural net-

works and graphs. A detailed description of Snap! with a lot of examples can be found at "Computer Science with

Snap!" 11 – and of course, in the Snap!-manual12. The presented concepts have been and will be used in classes

and in beginner lectures at the university.

Oh, and of course there are also two little helpers that will assist in your work with

SciSnap!. Depending on the application, they two will take turns. Alberto 13 will take care

of the more scientific applications, Hilberto 14 of mathematical and data-oriented ones. If

one is active, the other can rest a bit. Both claims to be distant relatives of Alonzo, the

Snap! -Mascot. Whether that’s true? One does not know!

I would like to thank Jens Mönig and especially Rick Hessman for his contributions to the

PlotPad, their support and the numerous discussions and suggestions. And many thanks

for the wonderful help of the DeepL15 translation program. I would probably never have

finished without it.

I hope you enjoy working with SciSnap!.

 Göttingen, on 2022.3.22

7 https://en.wikipedia.org/wiki/MIT/GNU_Scheme
8 https://mitpress.mit.edu/sites/default/files/sicp/full-text/book/book.html
9 as well as other materials on http://emu-online.de
10 http://snapextensions.uni-goettingen.de/
11 http://ddi-mod.uni-goettingen.de/InformatikMitSnap.pdf
12 https://snap.berkeley.edu/snap/help/SnapManual.pdf
13 he works in astrophysics with Rick Hessman
14 https://de.wikipedia.org/wiki/David_Hilbert
15 https://www.deepl.com/translator

http://emu-online.de/

Content 6

Content

Preface ……………….………………………………………………………………………………..……………………………………………….……… 3

Content …….…………………………………………………………………………………….………………………………..……………..…………… 6

1 Starting SciSnap! .…………………………………………………..…………………..……….………………..…………………………….. 9

2 New Blocks in the Standard Palettes ………..…………………………….………………………..…………………………………….. 10

3 The Structure of SciSnap!-Sprites……..……..………….…………………………….….……………………………………..…… 12

4 The SciSnap!-Libraries……………….…………………………….……………….……..…………………..…………………………… 14

 4.1 Blocks of the SciSnap! globals palette …………….……….………………………………………………………………...…… 14

 4.2 The Math Library ……………......…………………..…….……….………………………………………………………..……….…… 16

 4.2.1 Linear Algebra…………….…………………….…….…………………………….……………………………………..… 16

 4.2.2 Complex Numbers ..……………………………………….……………………………………………………………………… 18

 4.2.3 The MathPad ..…..…………………………………………………….……………………………………………………………. 19

 4.2.4 Numerical Methods …..…………………………………………………………………………………………..…….…...…. 20

 4.2.5 Statistics ..…………………………………………....………………………………………………...……..…………….………. 21

 4.2.6 Sets ………….……………………………………………….....……………………………………………..…….….…….………. 22

 4.3 The Data Library …….………………………………………..……………………………………………..…………………...….…….. 24

 4.4 The SQL Library ……………………………………..…….…………………………………………………..…………………...….……. 29

 4.5 The PlotPad Library …………………………………..…………….……………………………………………....…………...….……. 32

 4.5 The ImagePad Library ……………………………..…………………….…….……………………………………..………...….……. 34

 4.6 The GraphPad Library …….…………………………..……………………………………………………………..…..……..….……. 37

 4.7 The NeuralNetPad Library …………………………………..…………..……………………………………………..……..….……. 39

5 Data Import and Export……..………………….…..………….…………………………………………………………………….……… 41

6 Math related Examples ……………....…………………………………………….…………………………………………..…….….……… 45

 6.1 Representation of complex numbers ………………………….....……………………………………………..…….….……… 45

 6.2 Affine transformation of a triangle in R2 ….………………….....………..…….….……………………………………..…… 46

 6.3 Rotation of a pyramide in R3 ………………………………………...………..……………………………………………….……… 47

 6.4 Graph of normal distribution…………………………………………….…..………………………………………..…….……. 48

 6.5 Cartesian product of three sets ………...………..……………………….…..……………………………………..……….……. 49

 6.6 Representation of a set of points and the regression line .…………..……………………………………..…….……. 50

 6.7 Interpolation polynomial through n points ………….……………….…..…………………………………………..….……. 51

 6.8 Approximation of a tangent by secants …………....…………………………………………………………..………….……. 53

 6.9 Finite series …….………………………………………..………………………………………………………………….………………... 55

 6.10 Application of the Taylor series to the mathematical pendulum ………………………………………..…………... 57

 6.11 Fourier expansion for a square wave signal with numerical integration ………………………………………….. 60

 6.12 Drawing a function and its derivatives ………….…………………………………....…..……………………………………... 64

 6.13 Random experiments on the binomial distribution …..………………....…..…………………………….……………... 65

 6.14 Fast Fourier Transform (FFT) ………………..…………………………………………………………………………………………. 67

 6.15 A simple image compression method with FFT …….……………………………………………………………………….… 71

 6.16 A simple sound compression method with FFT …………………………….…………………………………………………. 74

Preface 7

7 Data related Examples ……...…………………………………………….…………….………………………………………………..……… 75

 7.1 Data plot of points scattering around a function graph ……………………....……………………………………….…. 75

 7.2 Histogram of random values …….…………………….………………………….…………………………………………..…..…. 76

 7.3 Plot of mixed data ………………..…..………………………………………………………………………………………..……...….. 77

 7.4 NY Citibike Tripdata 1: Correlations ..…….………………………………………………………………………………..…..... 78

 7.5 NY Citibike Tripdata 2: Usage of bikes ..……………………………..……………………………………………..……….…... 79

 7.6 NY Citibike Tripdata 3: World Map Library …..……………………….…..………………………………………..…….……. 80

 7.7 NY Citibike Tripdata 4: Lending diagrams …..…………………..…….…..……………………………………..……….……. 81

 7.8 Income data from the US Census Income Dataset ……….……………………………………………………..……….…. 84

 7.9 Covid-19-Data Analysis ………………………..………………………………………………………………………………..…...….. 86

 7.10 Star spectra ………….……………………………..……………………………..…………….….……………………………………..…. 88

 7.11 Flu wave simulation …………………………….……………………..……………………………..………………………………..…. 91

8 Graphic related Examples ...…………………………………………….…………….…………………………………………..…...……… 93

 8.1 Simple random graphic ……………………………...……….……………………………………………………………..……...….. 93

 8.2 False color image of a lunar crater …….…………………………………………………………………………………..…...….. 94

 8.3 Slice through the image of the lunar crater Tycho .……………………………………………………………..……...….. 94

 8.4 Shadow lengths in the lunar crater Tycho …………………………………………………………………………..……...….. 95

 8.5 Plot of image data as histogram ……………….………………………………………………………………………………...….. 96

 8.6 Simulation of a planetary transit in front of a sun …..……………………………………………………………..…...….. 97

 8.7 Affine transformation of an image ……………………………………………………………………………………..……...….. 99

 8.8 Kernel applications for edge detection in images .…………………..……………...……………………………………….100

 8.9 Diffusion in the grid model ……….. 101

 8.10 Ferromagnetism as a Grid Automaton ……………………………………………………………………………………………. 102

 8.11 Conway‘s Game of Life ……. 103

 8.12 A cellular automaton as a soft focus device …………………………………………………………………………………….. 105

 8.13 Linear Wolfram automata ………..…………………………………………………………………………………………………….. 107

9 SQL Examples………………………………………….…………….……………………………...……………………………………..…… 108

 9.1 Working with the SQL library ..…………..…………………………………………………...………………………………………. 108

 9.2 Simple SQL query …….……………….…………………………………………………………...……………………………………….. 109

 9.3 More complex SQL query ………….…………………………………………………………...………………………………………. 109

10 Graph Examples ……….....…………………………………………….……………………………...…………………………………………… 110

 10.1 Mean distances in a random graph (small worlds) ……………....………………...………………………………………. 110

 10.2 Mean distances in a scalefree graph (small worlds) ……………..…….………...……………………………………….. 110

 10.3 Edges per vertex histogram for a random graph ….……………...………………...………………………………………. 111

 10.4 Edges per vertex histogram for a scalefree graph ………………..………………...………………………………………. 111

 10.5 Breadth and depth first search in a family tree ….………………..………………...………………………………………. 112

 10.6 A graph lab …………………………………..………………………………………………………...………………………………………. 114

 10.7 Tree search in the graph lab ………..……..………..……………………..………………...………………………………………. 115

 10.8 Graph lab with world map library ………………………………………..………………...………………………………………. 116

Preface 8

11 Machine Learning Examples …………………………….………………………………………...………………………………………….. 117

 11.1 A simple perceptron as a graph …….……………………………………..……………...……………………………….………. 117

 11.2 A simple learning perceptron as a graph …………….………………..……………...……………………………….……….119

 11.3 Training of a neural network …………………………………….………….……………...………………………………….……. 121

 11.4 Traffic sign recognition with a neural network of perceptrons ..…………...………………………………….…….122

 11.5 Under- and Overfitting ………..……………………………………………….…..……….…………………………….…………... 127

 11.6 Classification in the HR-diagram according to the kNN method ….…………………………………..…………….. 130

 11.7 Decision trees according to the ID3 method ……………..………………………………………………..………………….132

 11.8 K-means-clustering ..…………………………………………………………………………...…………………..……………………. 134

 11.9 Clustering according to the DBSCAN method ..………………………..………………………….……………...………….137

 11.10 Outlier detection according to the DBSCAN method ….…………………………..……………………….…...………. 139

 11.11 DNA-Clustering with Levenshtein distance ..………………………….....………………..…………………………………. 140

 11.12 Character recognition with a Convolutional Neural Network ..…………….....…………………………………….. 141

 11.13 Reinforcement learning / Q-learning ..……………...………………………………..………..………………………………..146

Notes……..………….………………………………………………………………………..………..………..…………………………….….……… 149

References and sources……………………………………………………………….………..………..…………………………….….……… 150

1 Starting SciSnap! 9

1 Starting SciSnap!

SciSnap! consists of a collection of quite normal Snap! blocks, arranged in eight palettes, which differ in their

functionality. Another palette My own blocks is for your own programs. In addition, there is a sprite named

Hilberto with a few costumes, but it is not necessary for the blocks to work. Of course, nobody needs all palettes

at the same time; nevertheless I left them in one package, because from Snap!7.0 on it is possible with a few

clicks to delete the not needed parts quickly and to save the changed configuration as a new working environment.

The first four palettes contains blocks that can be used directly. Except for the SQL commands, they should not be

deleted. The commands of the other four palettes each refer to sprites that have been configured with the first

block of the palette - to SketchPads for diagrams, images, graphs, or neural networks. These palettes can be

deleted depending on the needs in the project.

The easiest way to start SciSnap! is to simply call the corresponding link.

https://snap.berkeley.edu/snap/snap.html#present:Username=emodrow&ProjectName=SciSnap!2.0&editMode

Of course, the SciSnap! blocks can be loaded instead -

but in this case without Hilberto. The second is recom-

mended if an existing project is to be extended with

SciSnap! functionalities.

SciSnap! works with a set of JavaScript libraries stored

on a server. They are loaded automatically by the block

start SciSnap! before Snap! is reconfigured to

SciSnap! which can be recognized e.g. by the changed

logo. You can find SciSnap! in the Snap! libraries in the

File menu. If you load the blocks from another server,

then you must explicitly allow access to JavaScript exten-

sions in the settings menu in case Snap! does not trust

the server.

We will go through this with an example: The goal is to

work with the SQL blocks and the palette for custom

blocks. It should also be possible to create diagrams.

1. Step: Either we load SciSnap! as a normal Snap! li-

brary (without Hilberto) or we load SciSnap!

from the Snap! cloud
 https://snap.berkeley.edu/snap/snap.html#present:Username=

emodrow&ProjectName=SciSnap!2&editMode

 (as a project with Hilberto). We get the adjacent

screen. There we enable JavaScript as needed.

2. Step: We delete the last three SciSnap! palettes using

the file menu (Remove a category...). In any case

we click on the start SciSnap! button. As a re-

sult, we get a SQL working environment, in the

picture with the result of a first query.

https://snap.berkeley.edu/snap/snap.html%23present:Username=emodrow&ProjectName=SciSnap!2.0&editMode

2 New Blocks in the Standard Palettes 10

2 New Blocks in the Standard Palettes

Some blocks of SciSnap! are located in the standard palettes because they logically belong there. They mostly

complement the functionality that is already there anyway. These are the following blocks:

Provides the costume of a sprite, for example for pool-

ing operations.

 Provides a copy of a costume.

Provides a costume of the specified size and color.

 Adds a copy of the current costume to the costume list

of the sprite or stage.

Imports a sprite that was exported as an XML file.

Deletes the calling sprite.

 A block from the Snap! libraries: Replaces a nested

block sequence with a somewhat clearer structure.

 Date and time in standard format, e.g. for astronomi-

cal purposes.

 Provides date and times based on the standard for-

mat.

Simple input dialog by selecting the desired answer

with the mouse.

2 New Blocks in the Standard Palettes 11

 Generates random numbers between 0 and 1.

Returns 𝜋.

Returns Euler’s number.

Rounds a number to the specified number of decimal

digits.

Returns the factorial of a natural number.

Calculates a binomial coefficient.

 Returns the specified part of a string.

Deletes a substring in another, either in all places or

the first one.

 Converts a string to uppercase.

 Converts a string to lowercase.

 Saves a text in the specified file in the download direc-

tory of the browser.

 Returns the position of the first character of the first

occurrence of the specified substring in a string.

 Replaces one substring in another, either in all places

or the first one.

 Creates a label for coordinate system axes from a col-

umn with texts.

3 The Structure of SciSnap!-Sprites 12

3 The Structure of SciSnap!-Sprites

The first part of SciSnap! consists of four libraries that are generally applicable in Snap! scripts (SciSnap! glob-

als, Math tools, Data tools, SQL tools). The other four libraries work with specially configured sprites (PlotPad,

ImagePad, GraphPad, NNPad). The reason for this is that the properties for a NeuralNet are very different

from those for a PlotPad. In addition, such "special sprites" must have their own data areas in which, for example,

image data can be stored. A global data area can be found in the SciSnap!Data variable, which e.g. the blocks of

the Data tools library use in the default case. For the creation of diagrams, on the other hand, it makes more

sense for a PlotPad to have its own data area that is independent of, for example, that of the ImagePad to which

the diagrams refer.

Each sprite and the stage can be configured as "special

sprites", e.g. as ImagePad. The local variables myProp-

erties and myData are created and some useful presets

are made for the properties. The properties are usually

grouped into groups, e.g. costume properties (costume-

Properties) or the way to draw lines (lineProperties). All

blocks that require a specific configuration initially check

the typeOfConfiguration property of the sprite they are

to work with. If this is not correct, an error message is dis-

played. The groups of properties can be changed with the

corresponding blocks.

The structure of the SciSnap! sprites is thus based on the idea of documented data sets consisting of two parts:

the metadata describing the structure and content context of the data (e.g. number format, image dimensions,

recording device, recording date, ...) and the associated pure data segments. Metadata usually consist of diction-

aries - names with assigned values (e.g., "recording date: 2018/12/24"). Examples of this structure are FITS files

[FITS], which are standard in astrophysics but are also used in the Vatican Library, or JPEG images from cell

phones. Here, too, there are metadata (image size, degree of compression, date taken, ...), without which image

generation would not be possible.

We adapt this structure by assigning two local variables to a SciSnap! sprite, each containing the data (myData)

and the data description (myProperties). These variables can be filled by importing data from different sources

(SQL query, text file, CVS file, JSON file, FITS file, direct assignment, ...), whereby the properties myProperties are

to be adapted to the respective data. On the other hand, this can also be done "by hand". With the help of these

properties, data can be converted into graphical representations (graph, data plot, histogram, image, ...), whereby

either myData or another suitable table is selected as source.

It is important that the image generation does not change the original data. If, for example, an image of Jupiter is

used to determine the distances of its moons, then these must at least be visible in the image. For this purpose, a

false color image can be generated after setting some parameters. In this image Jupiter itself will appear rather

unstructured. If, on the other hand, one wants to examine the "eye" of the planet more closely, then the

parameters must be chosen quite differently, so that the moons are barely visible. All these changes must be done

in the pixels of the current costume of the Snap! sprite without affecting the image data itself.

3 The Structure of SciSnap!-Sprites 13

Because tables can be represented very nicely in Snap!, this form of representation is not implemented addition-

ally. Instead, the data type table is implemented with many of the common operations in the field of data science

(table operations, correlation calculation, affine transformations, solving systems of linear equations, ...), which

can handle sufficiently fast even larger amounts of data.

Since SciSnap! (currently) contains about 250 new blocks, they have been grouped according to their function-

ality and distributed to different libraries and sprite configurations: a Math tools libraries for different areas of

mathematics (60 blocks), a Data tools library (38 blocks) for handling the actual data, an ImagePad for image

processing (25 blocks), a PlotPad for graphical representations (27 blocks), a NeuralNetPad for perceptron net-

works (11 blocks), an SQL library for database queries (26 blocks) and a GraphPad for graph theory applications

(35 blocks). In addition there are the already mentioned blocks in the standard palettes of Snap!. All blocks are

global and contain the target of the operation (thisSprite, theStage or the name of another sprite). Object-ori-

ented calls are therefore largely unnecessary.

The configured sprites have the following structure:

Most blocks get their parameters (image size, value ranges, colors, ...) from the dictionary myProperties. The

preset properties allow to use blocks for creating graphics, diagrams, ... without too many parameters. If the values

do not fit, the properties are changed either individually or in groups.

configurated sprite

Using the libraries,

they import data from

• Image-files

• Text-files

• SQL-queries

• JSON-files

• CSV-files

• …

libraries

The libraries provide

blocks for graphical

representation of data,

editing tables, applying

statistical operations,

solving systems of

equations,

4 The SciSnap!-Libraries 14

4 The SciSnap!-Libraries

In the following, the libraries are presented in tabular form. More extensive examples, which mostly use several

libraries, follow afterwards.

The SciSnap! libraries - like all block libraries of Snap! - have been assigned to palettes and saved. If the palette

of a block does not yet exist, then it is created during loading. If a library is to be loaded into another palette, then

the block can be used for this purpose. My own blocks is intended for the own

blocks.

4.1 Blocks of the SciSnap! globals Palette

In this palette there are blocks for the configuration of SciSnap!.

 Loads the JavaScript library of SciSnap!. Creates the

SciSnap! logo and the mapped global variables. Enlar-

ges the stage to 800x600 pixels.

 Creates the global SciSnap! variables and sets some

SciSnap! properties.

 Reads a property.

 Allows to change or to create a property.

 Creates a message window in the middle of the screen.

Reports an error, if possible, via the current sprite and

enters it into SciSnap!Messages.

 Tests an element to see if it belongs to a SciSnap!

type.

4 The SciSnap!-Libraries 15

 Tests whether a global or local property exists and

whether it has the specified value.

 Replaces the Snap! logo with the SciSnap! logo.

 Imports a library into the specified palette. All blocks

should belong to the same category!

4 The SciSnap!-Libraries 16

4.2 The Math Library

4.2.1 Linear Algebra

SciSnap! works with vectors and matrices and the common operations on them. Both are represented as lists or

lists of lists, and both can be in transposed form. The following blocks work with them:

Returns a vector of arbitrary di-

mension with given values.

Returns a vector of arbitrary di-

mension with random values in

the specified range.

Returns the matrix from the

specified vectors.

Returns a matrix of arbitrary di-

mension with random values in

the specified range.

Matrices and vectors can be

transposed.

Returns one of the specified

properties of a vector.

Between scalars, vectors and

matrices the assigned opera-

tions can be executed. Since

vectors can be processed with

the standard arithmetic opera-

tors of Snap! there are no sep-

arate blocks for them.

Applies a matrix to a list of

points (see example).

4 The SciSnap!-Libraries 17

Calculates the solution to a sys-

tem of linear equations.

The block returns several data

of the passed matrix: the possi-

bly diagonalized matrix, its

rank, whether column swaps

have occurred and the current

order of the columns. If only

the diagonalized matrix is of in-

terest, then we look at the first

element of the result.

Calculates the coefficients of

the polynomial through n

points.

For polynomials you can calcu-

late function values.

Performs an affine transfor-

mation in the plane for a list of

points, e.g. an image, de-

scribed by the assignment of

three points to three others

(see example).

Examples:

4 The SciSnap!-Libraries 18

4.2.2 Complex Numbers

If you are planning more extensive operations with complex numbers, you should consider using the Scheme li-

brary of Snap! (Bignums-library). SciSnap! is intended more for complex arithmetic as well as illustration of

operations. In SciSnap! complex numbers are represented as 3-element lists, where the first entry denotes the

format of the number: either the "Cartesian" style 𝑧 = 𝑎 + 𝑏 ∙ 𝑖 or the polar form 𝑧 = 𝑟 ∙ 𝑒𝑖𝜑. There are input

blocks for these two forms.

Returns a complex number in Cartesian form.

Returns a complex number in polar form.

If necessary, these forms of representation can be converted into each other, and arithmetic operations can be

performed.

Returns a complex number in Cartesian form.

Returns a complex number in polar form.

Example of format conversion.

The components of a complex number can be ac-

cessed - regardless of their format.

And, of course, you can calculate with them.

Example for a multiplication:

4 The SciSnap!-Libraries 19

4.2.3 The MathPad

Configures a sprite as a MathPad and draws a

3-dimensional coordinate system centered in

the middle.

 Test on MathPad configuration.

 Sets a MathPad property.

Reads a MathPad property.

 Sets the costume properties of a MathPad to

the specified values.

Sets the line properties of a MathPad to the

specified values. If "onlyPoints" is set, only the

endpoints are drawn.

 Draws the coordinate system on a MathPad.

Draws a vector, a complex number, a line or an

object described by a list of vectors on a Math-

Pad.

Example:

4 The SciSnap!-Libraries 20

4.2.4 Numerical Methods

The library contains some blocks for dealing with sequences, series, secants, integrals and roots, as well as the

calculation of a derivative at a given point.

Root calculation according to Newton's

method. The term must be entered with a gray

ring ("ringified").

Example: Calculation of the root of

𝑓(𝑥) = 𝑥3 − 3𝑥, start at x=1.

Calculation of a sequence element. The term

must be entered with a gray ring ("ringified").

Example: 17th element of the sequence
1

√𝑛
 .

Returns the first n elements of a sequence as a

list.

Example: The first 10 elements of the se-

quence
1

√𝑛
 .

Sequence of secant slopes in a point. The se-

quence can also be specified explicitly in the

form of a list. The term must be entered with a

gray ring ("ringified").

Example: 10 secant slopes near the point with

x=2 for 𝑓(𝑥) = 𝑥3 − 3𝑥 , calculated with the

sequence
1

𝑛2 .

Numerical calculation of the derivative in a

point. The term must be entered with a gray

ring ("ringified").

Example: Calculation of the derivative of

𝑓(𝑥) = 𝑥3 − 3𝑥 at x=0.

Calculates the sum of a finite series. The term

must be entered with a gray ring ("ringified").

Example: The sum of the first 1000 elements

of the series ∑
1

𝑖2
1000
𝑖=1 .

Numerical calculation of an integral using the

trapezoidal method. The term must be entered

with a gray ring ("ringified").

Example: Calculation of the integral

F=∫ cos 𝑥 𝑑𝑥
𝜋

0
 (with conversion to degrees)

4 The SciSnap!-Libraries 21

4.2.5 Statistics

For statistical applications SciSnap! contains a number of distributions. Correlation calculation, variances etc. are

implemented in the data library, binomial coefficients and factorials can be found in the operators palette.

Probabilities of the binomial distri-

bution

𝑏(𝑁, 𝑝, 𝑘) = (
𝑁

𝑘
) ∙ 𝑝𝑘 ∙ (1 − 𝑝)𝑁−𝑘

Calculates the cumulative distribu-

tion function of the binomial distri-

bution.

Probabilities of the hypergeometric

distribution

ℎ(𝑁, 𝑀, 𝑛, 𝑘) =
(𝑀

𝑘
) ∙ (𝑁−𝑀

𝑛−𝑘
)

(𝑁
𝑛

)

Calculates the cumulative distribu-

tion function of the hypergeometric

distribution.

Probabilities of the Poisson distri-

bution

𝑝(𝜃, 𝑘) =
𝜃𝑘 ∙ 𝑒−𝜃

𝑘!

Calculates the cumulative distribu-

tion function of the Poisson distri-

bution.

Probabilities of the Pareto distribu-

tion

𝑝𝑎𝑟𝑒𝑡𝑜(𝑥𝑚𝑖𝑛, 𝑘, 𝑥) =
𝑘 ∙ 𝑥𝑚𝑖𝑛

𝑘

𝑥𝑘+1
;

𝑥 ≥ 𝑥𝑚𝑖𝑛; 0 𝑠𝑜𝑛𝑠𝑡

Probabilities of the normal distribu-

tion

𝑛(𝑥, 𝜇, 𝜎) =
𝑒

−
(𝑥−𝜇)2

2𝜎2

√2𝜋𝜎2
;

 Calculation of fast Fourier transformation (FFT)

as well as their inverses (iFFT). Alternatively,

the data of the frequency spectrum are calcu-

lated.

4 The SciSnap!-Libraries 22

4.2.6 Sets

Sets are implemented in SciSnap! as 5-element lists. In the implementation, my goal was to deal with infinite

sets as far as possible. For this, sets defined by predicates were somewhat neglected. To create a set, one can

enumerate the elements {1,car,true}, define them via predicates {x|x<5} or enter ranges {-Infinity<x<=2}. The first

element of a set contains the type ("set"), the second contains a predicate indicating whether it is a "numeric" set

(i.e., all elements are numbers), the third is either empty or enumerates elements, the fourth may contain a list of

intervals containing the set elements, and the last may contain a predicate. Compound predicates are again lists

which contain the Boolean operator ("NOT", "OR", "AND") in the first element and then one or two predicates,

which again may be compound. If possible, the list elements are described by intervals. For this purpose, e.g.

predicates are converted into interval lists.

For further work with sets, the known set operations are available. If predicates are used, then only numbers and

strings are useful as elements. If the sets can be described by intervals, then the operations are not limited. About

20 auxiliary blocks for e.g. interval operations do not appear in the palettes. You can find them when you select

blocks to export.

 Blocks for defining sets (as described

above).

Returns "true" if the element is an el-

ement of the set, otherwise "false".

The basic set operations for calculat-

ing the intersection, union, difference

of sets, or the Cartesian product.

Returns "true" if set1 is subset of set2,

otherwise "false".

Returns "true" if set1 = set2, other-

wise "false".

Represents the elements of a set "a bit

more readable".

Creates the corresponding list of ele-

ments from a text. Lists are bracketed

"square" in the text, sets are brack-

eted "curly".

4 The SciSnap!-Libraries 23

Some operations have to be performed with finite sets, e.g. to enumerate set elements. For this reason there is

an upper bound for set elements, which is set by the SciSnap!Properties.

Sets the limit up to which predicates

or interval sizes are checked, if neces-

sary.

Returns the first n elements of a set as

a list.

Examples:

4 The SciSnap! Libraries 24

4.3 The Data Library

The data library of SciSnap! on the one hand serves for the direct manipulation of also larger data sets, on the

other hand for the evaluation of data, e.g. for the computation of statistical quantities such as the covariance or

correlations. In addition, there are some blocks for the standard machine learning methods.

Because number structures such as vectors and matrices are imple-

mented in the math library, the data library is largely limited to ta-

bles as an additional structure. Their rows and columns can be

identified either by their numbers or the identifiers of the first col-

umn or row. Columns can additionally be named with capital letters

(A..Z). If a number is required as identifier (i.e. not the column or

row number), then a double cross (#) must be placed in front of the

number as identifier, e.g. #123.

The following examples refer to a table that contains "party names" as the first column, followed by "election

results" in the years indicated.

Returns an empty table (as a start structure for further

table operations).

Returns a table of the specified size, initialized with a

starting value.

 Returns a table of the specified size without contents,

but with column headers.

Returns a copy of a list or table. Since Snap! assigns lists

as references, you can use this block to avoid unin-

tended changes to the original.

The block imports tables, image data or SQL data into

the global variable SciSnap!Data, with which the other

blocks of the library work by default.

Example: Importing a table using the file selection dia-

log.

Writes a table to a file of the browser's download area

under the specified name.

Returns n randomly distributed points of the specified

range.

4 The SciSnap! Libraries 25

 Returns n points scattering around a straight line, given

by slope and y-axis intercept, in a range bounded by

"range". Mostly used for tests.

Example: 5 points scattering around 𝑓(𝑥) = 𝑥 − 2.

Returns n points that scatter around an arbitrary func-

tion, given by its "ringified" operators, in a range

bounded by "range". Mostly used for tests.

Beispiel: 5 points scattering around 𝑓(𝑥) = 𝑥2 − 4.

Returns a transposed table or list as result, i.e. one in

which rows and columns have been interchanged.

Adds a row, a column or column headers to the specified

table. Missing elements are added with empty content,

"overhanging" are ignored.

Returns a row or column of the specified table.

Example: The first column of the example table without

the header.

Deletes a row or column from the specified table.

Example: Deletes the column for the year 2010 from the

example table.

Returns the specified table element.

Example: Result of the party KKA in 2011.

 Sets the value in a table cell.

Returns the specified range of rows.

Example: Results of the three specified parties from

2010 and 2020.

4 The SciSnap! Libraries 26

Returns a section of a table, matrix, list or image data

given by the two points "left-top" and "right-bottom".

Returns selected rows of a table that satisfy the specified

criterion.

Example: All election results with parties starting with

"A".

Counts the occurrence of the values of a list.

 Determines the entropy of a list.

 Removes duplicates from a list.

Normalize a vector by dividing it by the mean, maximum,

number, sum, median of its values or by applying the

softmax function.

Example: Results of the party KKA, "normalized" by the

mean value.

Compresses a vector or matrix with the specified factor

by averaging.

Returns a table that has been compressed by max- or

mean-pooling with stride n. The dimensions of the new

table are passed before the result. Well applicable to im-

age data.

Example: A matrix of 100x100 random numbers is com-

pressed with stride 25.

 Sorts a list using the specified predicate.

4 The SciSnap! Libraries 27

Returns a table sorted in ascending or descending order

by the specified column.

Example: The election results sorted by the year 2011.

Returns minimum, maximum, number, sum or average

of the first specified column of data, grouped by the sec-

ond. The headings can be included - or not.

Examples:

The mean values for 2010, grouped by party.

The mean values for 2010, grouped by party.

Returns ranges, covariance and correlation between two

table columns.

Example: Correlation between the years 2010 and 2011.

Returns gradient and y-axis intercept of the regression

line through the specified data.

Example: Regression line through 10 random points

scattering around a straight line.

k-nearest neighbor (kNN) method in two dimensions for

machine learning.

Example: HR-diagram

Returns the result of a convolution, applied either to a

table or to image data.

Examples: edge detection, CNN

Clustering of n-dimensional data with the k-means

method. The Euclidean distance is taken as the metric.

Cluster numbers are appended to the data.

Clustering with any metric.

Example: DNS-Clustering with Levenshtein metric.

4 The SciSnap! Libraries 28

 Returns the Levenshtein distance between two strings.

 Clusters data according to the density based DBSCAN

method.

Returns a decision tree for the specified data, con-

structed using the ID3 method.

 Classifies data using an ID3 tree.

4 The SciSnap! Libraries 29

4.4 The SQL Library

The SQL library contains most of the commands required for SQL queries (select). Other SQL statements can

be entered directly into the exec SQL-command block. However, in this case you must have the appropriate

access rights. The library works with a global variable SQLData, which prevent the data stored in them from

conflicting with that of other sprites. The variable is created automatically during configuration.

Similar to the Math and Data blocks, the SQL blocks do not work with a specific sprite or stage. However, each

call first checks whether SciSnap! has been successfully configured for SQL access. If this is not the case, an error

message is displayed - for reporter blocks as the result of the function call, for command blocks as the output of

the calling sprite as well as in the SciSnap! collection box for error messages SciSnap!Messages.

Configures SciSnap! for SQL access. For this,

the global variable SQLData is created and

the initial properties are set. The sprite that

executes the command will take the costume SQLDis-

connected if it exists.

Returns "true" if the configuration is correct, otherwise

"false".

Connects to a database server whose address

is in the script. This should be reset, e.g. as lo-

calhost, if the default server is not used. If the

connection attempt is successful, the executing sprite

will take the costume SQLConnected if it is present.

Imports a table into the SQLData data space.

Example: Import of a query result.

Returns a list of currently available databases.

Selects one of the existing databases.

Returns a list of the tables of the selected database.

4 The SciSnap! Libraries 30

Selects one of the existing tables.

Returns a list of attributes of the specified table.

Block for generating simple SQL queries that can be ex-

ecuted by the exec SQL-command block.

Block for generating complex SQL queries that can be

executed by the exec SQL-command block.

Block for executing SQL statements for a database. The

statements can be generated by select blocks or en-

tered directly.

 Predicates for the execution of comparisons.

 Predicates for the execution of logical operations.

 Predicate for checking a string pattern.

Predicate to check if an element is included in an enu-

meration.

Aggregate functions.

4 The SciSnap! Libraries 31

The following SciSnap! libraries work with locally configured special sprites. These are conceptually derived

from sketchpads, so they are used for making sketches, experimenting, trying out the effect of commands, etc.

If the pad is too full, then a new "page" is taken from it and work continues.

Each sprite and the stage can serve as a special sprite. For this purpose they are configured accordingly by creat-

ing two local variables myData and myProperties and filling them with initial values. The commands that refer

to a special sprite all contain the target of the operation - i.e. a sprite or the stage. Before executing the instruc-

tions, it is checked in each case whether the target has been configured correctly. After that, the local data and

properties of the target are used. On the one hand, this procedure largely eliminates object-oriented calls, which

greatly lengthen the instruction blocks if data must be passed, and on the other hand, it keeps the data local to

the sprites that the operations concern. For example, if data is measured in an image and plotted in a graph, the

ImagePad and the PlotPad can work independently with their own data and properties. The initial settings make

it possible to work with halfway reasonable default settings. If the result shows that other settings would make

more sense, then the default settings are changed - but only then. This way of working makes it possible to get by

with relatively few parameters for the individual blocks. The properties are largely grouped together, for example

the properties of the lines to be drawn. This means that they can be transferred or read "in one go" and their

number is kept within limits.

4 The SciSnap! Libraries 32

4.5 The PlotPad Library

PlotPads are used to display graphs, histograms, etc. The current SciSnap!PlotPad Library was heavily designed

by Rick Hessman, especially the PrettyPrinting and the line styles are from him. Many thanks for that!

Configures a sprite or the stage as a PlotPad. The

name of "anotherSprite" must be specified if required.

The command must be executed once before working

with a sprite as a PlotPad. The target of the call takes

a rectangular costume with the specified dimensions

and colors.

Returns "true" if the configuration is correct, other-

wise "false".

Sets one of the properties in myProperties to the

specified value.

Returns one of the properties in myProperties.

Sets the costume properties of the specified target.

Sets the line properties of the specified target.

Sets the marker (datapoint) properties of the specified

target.

Sets the scale properties of the specified target.

Sets the label properties of the specified target.

Sets the distances of the coordinate axes from the

edges.

4 The SciSnap! Libraries 33

Sets the ranges of the axes of the coordinate system.

Adds a function graph to the PlotPad, given as a list of

polynomial coefficients or as a "ringified" term.

Adds a data plot for a two-dimensional data table to

the PlotPad.

Adds a data plot to the PlotPad for a two-dimensional

table containing texts in the first column and numeri-

cal values in the second.

Adds a histogram to the PlotPad.

Adds axes and scales to the PlotPad. Depending on

your preference, you can also add this block to the ac-

tual plot commands at the end.

Deletes the PlotPad without changing the other pre-

sets.

Sets the ranges of the axes so that "pretty" labels are

on the axes.

Returns values for "pretty" labels of the axes.

Redetermines the ranges, calculated from the data.

 Returns the ranges of a two-dimensional table.

Returns the conversion of a numerical value into coor-

dinates of the plotpad or the coordinate system used.

Converts the mouse position into costume or graph

coordinates.

Simple plot program for data.

Example:

4 The SciSnap! Libraries 34

4.6 The ImagePad Library

ImagePads are used to display image data, i.e. to generate images. Measurements can be made in these images

using the mouse - for example, a section can be created through the image. In addition, some of the usual opera-

tions for drawing lines, rectangles, circles, and texts are available. In addition, grids can be displayed, and opera-

tions can be performed on grids. The coordinate system on ImagePads is the usual one for images: the origin is

in the upper left corner and the y-axis is directed downwards.

Configures a sprite or the stage as ImagePad. The name

of "anotherSprite" must be specified if required. The

command must be executed once before working with a

sprite as ImagePad. The target of the call takes a rec-

tangular costume with the specified dimensions and col-

ors.

Returns "true" if the configuration is correct, otherwise

"false".

Returns one of the properties in myProperties.

Sets one of the properties in myProperties to the spec-

ified value.

Sets the costume properties of the specified target.

Sets the line properties of the specified target.

Sets the values for the dimensions of the grid.

Creates an image from the image data on a ImagePad.

Imports image data to myData oft he specified sprite.

4 The SciSnap! Libraries 35

Elementary drawing operations.

Draws a list of "points" as circles or squares. Attention:

JS-coordinates are used!

 Sets a pixel of the costume to the specified value.

 Returns the value of a pixel of the costume.

Sets an image point in the data space to the specified

value.

 Returns the value of an image point from the data space.

Returns image data using the mouse: individual image

values, image coordinates, sections through the image,

end points of a line or data of a circle, brightness values

from a range or a grid value. The image data must be lo-

cated in myData.

Returns the result of an affine transformation of a cos-

tume described by specifying three original points and

three image points.

Returns the total brightness around a pixel in the speci-

fied radius.

Randomly fills the cells of a grid with one of the specified

numbers.

Set cell contents using the mouse.

 Direct setting of cell contents.

Determines the specified neighborhood of a grid cell.

Randomly swaps the values of grid cells with those of

neighboring cells from the specified range.

Replaces the cell values from the specified range under

the specified conditions.

Replaces the cell values from the specified range with

the result of the specified aggregate function.

4 The SciSnap! Libraries 36

Superposes two grids using the specified operation.

Applies the operations of the given linear Wolfram au-

tomaton on a grid from the first line to all following ones.

Examples:

4 The SciSnap! Libraries 37

4.6 Die GraphPad-Bibliothek

Graphs are one of the most powerful models in computer science. With their help, complex systems can be stud-

ied, especially the effect of the interconnection of numerous similar subsystems. However, the algorithms re-

quired for this, such as breadth-first search or routing, are themselves non-trivial, so it seems reasonable to pro-

vide them as basic commands in order to concentrate the work on the modeling itself. This is exactly the purpose

of the GraphPads.

Configures a sprite or the stage as a GraphPad. The

name of "anotherSprite" must be specified if required.

The command must be executed once before working

with a sprite as GraphPad. The target of the call takes a

rectangular costume with the specified dimensions and

colors.

Returns "true" if the configuration is correct, otherwise

"false".

Sets one of the properties in myProperties to the spec-

ified value.

Returns one of the properties in myProperties.

Sets the costume properties of the specified target.

Sets the vertex (node) properties of the specified target.

Sets the edge properties of the specified target.

Adds n vertices (nodes) to the graph at random posi-

tions.

Adds one vertex (node) to the graph at the specified po-

sition.

 Moves a vertex (node) to the specified position.

 Adds n random edges to the graph.

Adds an edge to the graph between the specified verti-

ces (nodes).

Draws the graph. Colors connected vertices (nodes) in

the same color. If you draw on the stage, the initial back-

ground image remains, e.g. to be able to use maps.

 Deletes a vertex (node) of the graph.

Deletes an edge of the graph.

4 The SciSnap! Libraries 38

Returns the weight of an edge, if possible.

Changes the weight of an edge, if possible.

 Asks for a new edge weight.

 Asks for a new start vertex size.

 Returns the content of a vertex (node).

 Changes the content of a vertex (node).

 Asks for a new vertex (node) content.

 Marks a vertex (node).

 Removes the marking of a vertex (node).

 Removes all markers in the graph.

Depth-first search for a content starting from the vertex

with the specified number.

Breadth-first search for a content starting from the ver-

tex with the specified number.

 Spatial distance between two vertices on the sprite.

Shortest path between two vertices in the graph.

List of all shortest paths from a vertex to all connected

vertices in the graph.

 Number of a vertex at the given position on the sprite.

Converts stage coordinates to graph (JS-style) coordi-

nates.

Returns the number of the vertex with the specified con-

tent.

Returns the number of the node at the mouse position.

Examples:

4 The SciSnap! Libraries 39

4.7 The NeuralNetPad Library

The basic principles of neural networks are simple and obvious, but the learning procedures of the systems with

their discrete gradient descent and the associated partial derivatives are not so easy to understand for those who

are distant from mathematics. In particular, it is not so easy to understand what a neural network has actually

learned. The SciSnap!NNPadLibrary is intended to enable the handling of neural networks on an intermediate

level between very small and really large networks. It illustrates the values of the edges by coloring, where positive

values are shown in green and negative values in red colors. Small values tend to be black. The library facilitates

the creation and training of fully connected perceptron nets.

Configures a sprite or the stage as NNPad. The name of

"anotherSprite" must be specified if required. The com-

mand must be executed once before working with a

sprite as NNPad. The target of the call takes a rectan-

gular costume with the specified dimensions and colors.

Returns "true" if the configuration is correct, otherwise

"false".

Sets one of the properties in myProperties to the spec-

ified value.

Returns one of the properties in myProperties.

Sets the costume properties of the specified target.

Sets the layer properties of the specified target.

Adds random weights for an NN of the specified width

and depth.

Returns the output of the nth layer of the NN for the

specified input vector.

Displays the status of the network for the specified in-

put vector in color-coded form.

Trains the NN for the given input vector to achieve the

given output vector.

4 The SciSnap! Libraries 40

Example: A neural network is trained to produce the specified pattern when the numbers 1 to 20 are applied to

the inputs.

5 Data Import and Export 41

5 Data Import and Export

Snap! can import a number of data formats directly. This can be done by "dropping" ap-

propriate files onto the Snap! window or importing them by right-clicking on a Variablen-

Watcher16. Both work well with text, CSV and JSON files. Other text file formats like FITS

can also be imported this way, asking if you are serious. Exporting works the same way.

The data will then end up in the download folder of the browser. If you want to do the

same programmatically, use the option read file with filepicker. A file manager window

appears where you select the file as usual. After that the data will be imported.

The essential task remains to assign this data to the

SciSnap!Data variable and set the corresponding

properties in SciSnap!Properties. This is done by the

following block, which imports data from outside into the

SciSnap!Data area. This can be image data, table data or

the data of the current costume. This is stored as a table

of RGB values.

Example: False color image

Using an ImagePad, an image (source: [NASA]) is saved

and redisplayed with false colors.

Example: CSV Import

Almost 600000 records from a CSV file are read in about

10 seconds. The properties are set.

16 A variable watcher is obtained by checking the box next to the variable.

5 Data Import and Export 42

Example: SQL Import

If we have access to an SQL server, we can also import data

from it. In our case, we use the SciSnap! SQL library to

import the results of a query into the SQLData variable.

In doing so, the data is converted into table form and its

relevant properties such as number of columns and rows,

... are reset in the SciSnap!Properties.

Example: JSON Import

Again, the easiest way is to simply "drop" a JSON file into the Snap! window.

But it can also be done automatically. First of all, we look for interesting JSON

data and of course choose the statistics of baby names in New York City for

this - what else. The appropriate block for this is again import <table data>

from < filepicker> to SciSnap!Data. The result is a list with two columns and

two rows, the metadata and the actual data. Because we

are interested in these we replace the original data with

the element (2|2) of the table. Of course, we looked at the

individual elements in table form beforehand to check

what we loaded there in the first place. From the many

columns we copy the three interesting ones into a new

table, add column headers and import the result back into

SciSnap!Data.

The result:

19419 baby names - Who would have thought it!

5 Data Import and Export 43

Examples: Data import by mouse

In many cases, especially with images, it is advantageous

to read in data using the mouse. For this purpose,

ImagePads have a block that can be used to determine

image values, image coordinates, the data on a section

through the image, the start and end points of a line, the

center and radius of a circle, and the summed brightness

values together with their number in a circle. As an

example, the height of ancient columns is to be measured.

For this purpose, the costume image of the ImagePad

with the columns is imported and then measured with the

mouse (yellow line).

As a second example for measuring with the mouse we

want to measure the total brightness inside a circle

around a star photo (source: [HOU]).

For grayscale images like FITS we get the total brightness

and the number of measured pixels, for RGB images we

get the brightness of the three colors and the number of

pixels.

5 Data Import and Export 44

The export of data again can be done directly from a

variable watcher.

For scripts there are two new blocks write <table> to

CSV file <filename> and write string <string> to file

<filename>. The results end up in the browser's

download folder, as usual in Snap! The two blocks allow

to automate the data exchange with spreadsheet

programs or text files, for example to save the results of

data processing.

6 Math related Examples 45

6 Math related Examples

6.1 Representation of complex numbers

The operations with complex numbers can be easily illustrated in SciSnap! by using the MathPad: a sprite con-

figuration that allows to quickly represent, for example, complex numbers as arrows. Since the complex plane has

two dimensions, we need to change the default (3 dimensions), then we represent two complex numbers and

their sum in different colors.

Create the MathSprite sprite as MathPad in the specified

size and color. Then set dimension etc.

Draw the first number in green, moving the starting point.

Draw the second number in blue. Then move the starting

point back to the origin.

Draw the sum in red from the origin.

Since this is a mathematical example, of course Hilberto's

contribution must be adequately acknowledged by his co-

representation.

6 Math related Examples 46

6.2 Affine transformation of a triangle in R2

We define a triangle by its vectors. Then we define three

points in the plane and three image points to which these

are to be mapped.

Then we create a two-dimensional MathPad, change the

maximum value of the axes and draw the triangle in red.

To its position vectors we apply the affine transformation

and draw the result in blue. Since coordinate transfor-

mations are something for physics, Alberto presents the

result.

6 Math related Examples 47

6.3 Rotation of a pyramid in R3

First, of course, we want to draw a pyramid. We define the

base and the top by location vectors.

We have them drawn by first drawing the base area, then

lines from its corners to the top.

For rotations around the axes we need the three rotation

matrices Dx, Dy and Dz. For a rotation around the x-axis by

90° we can apply the matrix directly to the base surface.

Then we let draw the side lines to the rotated point by

multiplying the rotation matrix with the transposed

location vectors of the points. Since we - mathematically

correct - multiply matrices with column vectors and get

column vectors as results, we have to transpose them

again to get normal location vectors.

So in total:

6 Math related Examples 48

6.4 Graph of normal distribution

Using the PlotPad, the graph of the normal distribution is drawn. To do this, we create a clone of Hilberto, con-

figure it as PlotPad and create the graph.

6 Math related Examples 49

6.5 Cartesian product of three sets

First of all, we create three sets with names, possible ages

and occupations:

From these sets we can now form the Cartesian product

of names, ages, and occupations:

And thus nothing stands in the way of a transition to the topic of "relational databases", for example.

6 Math related Examples 50

6.6 Representation of a set of points and the regression line

Using the Data tools, we create 100 random points

scattering around a straight line with gradient m=0.5 and

intercept b=0. We plot the obtained points in a diagram.

 In addition, the regression line is also drawn.

6 Math related Examples 51

6.7 Interpolation polynomial through n points

We want to generate a data set of 100 points that scatter around a given function. We display these points in a

diagram. We then select three points by clicking on the corresponding locations with the mouse and placing a red

marker there. After that we draw an interpolation polynomial in red through these three points. Since this is a

"mathematical" project, Hilberto is responsible for it.

First of all, the random points:

After that we configure the current sprite to the PlotPad

and draw the points.

Now we select the three points and plot them in the

diagram right away.

And last we add the interpolation polynomial.

6 Math related Examples 52

Tasks:

1. a: Generate "point clouds" scattering around other polynomials.

 b: As in the example, specify some points in these clouds through which an interpolation polynomial is to be

drawn.

 c: Let draw these polynomials.

2. a: Experiment with the number of points you select. Do the results get better when you select more points?

 b: Generate "point clouds" that scatter around non-rational function graphs (trigonometric, ...). Can you also

describe these by interpolation polynomials?

 c: Formulate a rule for when and how to use interpolation polynomials in a meaningful way - and why just so.

6 Math related Examples 53

6.8 Approximation of a tangent by secants

We want to show that a sequence of secant slopes

converges against the gradient of the tangent line at a

point. To do this, we configure a sprite called PlotPad as

PlotPad and draw the graph of a function, here:

 𝑦 = 0,3 ∙ 𝑥3 − 3 ∙ 𝑥 .

We want to draw a sequence of secants near the right

minimum, which approach the tangent. Of course we

need a point (x0|y0) near the minimum to do this:

We may as well draw it.

As sequence to approach the point we choose 𝑎𝑛 =
2

𝑛
 ,

and we let generate the first 20 elements .

The rest is also simple: we have the secant slopes calcu-

lated ...

… and the secants drawn in color gradations.

6 Math related Examples 54

The whole thing - with result - once again in one piece:

Tasks:

1. In addition, have the "correct" tangent drawn in the diagram.

2. Choose as sequence for the secant calculation other sequences approaching the point (x0|y0) from the

other or both sides.

3. a: Similarly, illustrate the calculation of roots using the Newton method.

 b: Select some cases where the procedure works well or hardly or not at all.

6 Math related Examples 55

6.9 Finite series

We want to approximate some of the common mathematical constants and functions via series expansions - and

also try out how long you actually have to calculate to get good results.

Let's start with . In a compendium of formulas 17 or on

Wikipedia 18 we can find a formula for calculating  the

Leibniz-series:

π

4
= ∑

(−1)𝑖

(2 ∙ 𝑖 + 1)

𝑛

𝑖=0

We can implement it directly in SciSnap!. But when is the

result actually "good"?

To answer this question we create a table.

With a million summands you have to wait a bit for

the result!

Actually, it is strange that one must calculate so long for

so little improved accuracy. You might do something like

that in rainy Hanover in 1673 to avoid having to go for a

walk - but now? We just try the BIGNUM library from

Snap! for exact calculations with Scheme numbers.

Then the calculation takes even longer and we get amaz-

ing results that don't look like .

After a long search, we discover the fraction bar in the

middle, although it is no longer visible in the second line.

Scheme numbers are exact fractions and not floating-

point numbers. We therefore have the exact Scheme

numbers converted to inexact floating point represen-

tation before we enter them into the table.

17 Ask your grandpa what it is.
18 https://en.wikipedia.org/wiki/Leibniz_formula_for_π

6 Math related Examples 56

Despite the effort, the results are almost the same as before. Thus, the poor convergence behavior of the series

is not due to the inaccuracies of the standard arithmetic of a programming language (here: JavaScript), but to its

structure. Good to know!

Tasks:

1. Find out the meaning of the terms "scheme numbers" and "floating point numbers".

2. Look for other series expansions for , which converge better than the Leibniz series.

3. Find and implement a series expansion for Euler's number e.

4. Inform yourself about reasons to calculate with the accuracy of Scheme numbers instead of that for floating

point numbers.

5. Write scripts for the series expansion of trigonometric functions, e.g. sin(x), cos(x), ... Note that the angle must

be specified in radians.

6 Math related Examples 57

6.10 Application of the Taylor series to the mathematical pendulum
A very illustrative application of series expansions is the simulation

of a mathematical pendulum, i.e. a string pendulum. Usually, one

works there with the approximation that for small angles the value

of the sine (in radians) corresponds approximately to the value of its

argument - i.e. one breaks off the series expansion of the sine func-

tion after the first summand. Let's take a closer look: We get the

force 𝐹 as 𝐹 = −𝐺 ∙ sin 𝜑 = −𝑚 ∙ 𝑔 ∙ sin 𝜑 accelerating the ball on

the circular path. According to the basic equation of mechanics, this

force is equal to the inertial force 𝑚 ∙ 𝑠̈ = 𝑚 ∙ 𝑎. If we use the relation

for the angle in radians 𝜑 =
𝑠

𝐿
, we get

𝜑̈ = −
𝑔

𝐿
∙ sin 𝜑

For small angles the approximate sin 𝜑 ≈ 𝜑 is valid and thus

𝜑̈ ≈ −
𝑔

𝐿
∙ 𝜑

Let's see if this works! First of all we simulate the "real"

pendulum movement by taking the acceleration from the

current position, from it we determine the change of the

velocity and from it again the new position. We put the

data into a list plotdata1. Some further quantities like the

length of the pendulum and the initial displacement are

given by variables in the slider view. First of all, we plot

the initial situation: A pen draws required lines, and the

pendulum hangs on the ceiling of the lab, of course.

Now we start: We measure the current deflection and the

time and write both values into the list of measured

values. Then we calculate the current acceleration, which

changes the angular velocity, and from that the new angle.

After that we let draw the new situation. And this again

and again.





G=m.g

F=-m.g.sin 

L

6 Math related Examples 58

To this arrangement we add another sprite as PlotPad:

the Plotter. It is fast enough to display the current data in

real time. Therefore we insert the block for it into the

simulation loop of the pendulum.

 Alberto is visibly thrilled that this is working out so well!

But the real goal was to see how good the approximation

is. For this purpose we introduce a second data list

plotdata2 as well as an "approximated" angle 𝜑𝐴𝑝𝑝𝑟𝑜𝑥

and the corresponding angular velocity. The "real" angle

𝜑 and the approximated one start with the same value.

Then we measure the "real" deflection of the pendulum

and calculate the approximated value. We draw both in

the diagram - the calculated value in red.

You can see that the approximation is quite good at the

beginning, but diverges with the real-time values as time

goes on.

6 Math related Examples 59

This can be done better!

Instead of the linear approximation, we choose the Taylor series of the sine, of which we use n sums as approxi-

mation. We specify n as slider variable.

sin 𝜑 = ∑(−1)𝑖 ∙
𝜑2𝑖+1

(2𝑖 + 1)!
=

𝑛

𝑖=0

𝜑 −
𝜑3

3!
+

𝜑5

5!
− ⋯

We can copy this directly into SciSnap!:

Together with the conversion of angles into radians we ob-

tain for the angular acceleration:

Already with an extension of the approximation by one se-

ries element (i.e. −
𝜑3

3!
) the deviation from the measured

values are no longer visible in the diagram.

Tasks:

1. Let the simulation run longer and notice when - depending on the number of summands of the Taylor series

- deviations appear.

2. Do the same for different start angles of the pendulum.

6 Math related Examples 60

6.11 Fourier expansion for a square wave signal with numerical inte-

gration
One way to represent a 2 -periodic function 𝑓(𝑥) is the Fourier representation

𝑓(𝑥) ≅ 𝑎0 + ∑(𝑎𝑘 ∙ cos(𝑘 ∙ 𝑥) + 𝑏𝑘 ∙ sin(𝑘 ∙ 𝑥))

∞

𝑘=1

 𝑎0 =
1

2𝜋
∙ ∫ 𝑓(𝑥) ∙ 𝑑𝑥

2𝜋

0

𝑎𝑘 =
1

𝜋
∙ ∫ 𝑓(𝑥) ∙ cos(𝑘 ∙ 𝑥) ∙ 𝑑𝑥

2𝜋

0

 𝑏𝑘 =
1

𝜋
∙ ∫ 𝑓(𝑥) ∙ sin(𝑘 ∙ 𝑥) ∙ 𝑑𝑥

2𝜋

0

; 𝑘 = 1,2,3, …

We want to determine the coefficients for the series expansion of a rectangular signal purely numerically and

test how the length of the series expansion affects the accuracy of the results.

First of all we need a square wave signal with period 2. A function that returns this, would be e.g.

 𝑓(𝑥) = {
−1 𝑖𝑓 (𝑥 𝑚𝑜𝑑 2𝜋 − 𝜋) > 0

 1 𝑖𝑓 (𝑥 𝑚𝑜𝑑 2𝜋 − 𝜋) < 0
 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Of course, let's look at this in the diagram before we

think it is a square wave signal:

True so.

Now, for each value of x, we need to calculate the first n

coefficients of the Fourier series. For this we use the

block for numerical integration.

So, let's try it for 𝑎0 =
1

2𝜋
∙ ∫ 𝑓(𝑥) ∙ 𝑑𝑥

2𝜋

0
. Since we al-

ready have the "ringified term" for the function f, we can

simply write off:

For the other coefficients we have to complete the

trigonometric terms and obtain for

ak: and bk:

6 Math related Examples 61

These terms now only have to be summed up:

This gives us the following script in total.

We have two "screws" in it, which we can turn: on the one

hand the number n of the terms of the Fourier series can

be changed, on the other hand the number i of the

intervals in the numerical integration. The effects of

changes can be easily observed if we randomly draw

values from the range of values of x and plot the result

together with the function f. Deviations then show up

immediately.

n summands i intervals result comment

50 100

Actually quite

good except for

"slips" that are at

the jump points

of the function.

6 Math related Examples 62

50 50

That should be

clear.

50 200

 Better, but only

slightly better

than with 100

summands.

25 200

 Worse, but only

marginally worse

than with 50 sum-

mands.

10 100

 Perhaps quite a

good compromise

between accuracy

and computation

time require-

ments.

5 75

 In many cases,

this is probably

still acceptable.

You can see that the accuracy required depends on the task. For example, are slips at the jump points acceptable

or is it precisely there that precision is important? It can also be seen that very different effects can be achieved

with the same effort.

6 Math related Examples 63

Tasks:

1. a: Give function terms for a triangular signal, a signal made of peaks, Have the function graphs drawn.

 b: Calculate the Fourier series for the signals.

 c: Experiment as shown to find a reasonable tradeoff between accuracy and computation time require-

ments.

2. a: Create tables with the data for a triangle signal, a signal from peaks, ... using the function terms.

 b: Output the signals through the speaker.

 c: Generate the corresponding tables using Fourier series of different quality and listen to them as sounds as

well. Do you perceive any differences?

3. Find out about applications of Fourier series.

6 Math related Examples 64

6.12 Drawing a function and its derivatives

We want to use a PlotPad to display a function and its first two derivatives in different colors and line styles. To

do this, we create a new sprite, switch to its script area, and configure it appropriately. The function terms are

specified once as a "ringified" operator, then twice as a list of polynomial coefficients.

Tasks:

1. Plot different types of functions (trigonometric functions, logarithms, polynomials, ...) as graphs on a PlotPad.

2. Complete the function graphs with their derivatives.

3. Select different ranges of values, precision of the number representation and text sizes and labels for the rep-

resentations.

6 Math related Examples 65

6.13 Random experiments on the binomial distribution

Since the work here is really mathematical, we ask Gundolf de Jong, the talented young mathematician, for his

help. On the one hand, he is to perform random experiments, on the other hand, he is to evaluate the experiments

and compare them with the corresponding binomial distribution. To do this, of course, he generates a diagram.

For the experiments, Gundolf needs red and green balls

that can be numbered. These are supplied to him by a

sprite called Ball, which can be asked for appropriate

copies.

After the execution of

Gundolf is still quite alone in the room with his balls. He

therefore begins to experiment: from his 10 balls he ran-

domly takes one and checks its color. If it is red, he counts

the ball and puts it back. He does this 10 times each and

calls the whole thing an experiment. He performs these

experiments n times and divides the number of red balls

drawn by the total number of experiments. He returns the

result.

6 Math related Examples 66

After that, he can draw a plot on a Sprite PlotPad showing

the corresponding binomial distribution in red. He then

draws the result of n=1000 experiments in green on top.

Tasks:

1. Change the rules of the game: Do not put the picked balls back, change the number of balls in total, per color

or related to the number of drawn balls. Define what counts as a "success".

2. Plot the results on graphs. Find out about the expected distribution and enter it as well. Discuss deviations if

necessary.

6 Math related Examples 67

6.14 Fast Fourier Transformation (FFT)
The FFT (Fast Fourier Transform) is an efficient algorithm to calculate the Discrete Fourier Transform (DFT) of a

vector. A discrete periodic frequency spectrum is assigned to the data. It is one of the standard methods, e.g. for

scientific and technical applications. It is better to read about the details elsewhere before using the corresponding

SciSnap! block. At this point we want to describe the procedure by a Snap! script and then demonstrate the

possibilities of the SciSnap! block by some examples.

Let the shape of a function be given by a sequence of function values. We can imagine their generation as a reading

of the function value in regular intervals, e.g. in the case of a time-dependent signal in certain time intervals. This

is called sampling. However, only the function values, not the "interpolation points", go into the calculation of

the FFT. This vector is now repeatedly halved by dividing it by even and odd indices until only single function values

are left. From these the DFT is then generated by new combinations. Since this division is only possible for vector

lengths of 2N, a vector of other length must be completed before processing to this length by appending e.g. zeros.

The algorithm then works as follows19:

FFT(vector) //index starts with 0

 n = length of vector

 if n<=1 result = vector as complex number

 else halve vector into two vectors even and odd with even resp.

 odd indices and apply FFT to these:

 even = FFT(values with even index)

 odd = FFT(values with odd index)

 for m from 0 to n/2-1 do

 resultm = evenm+oddm*e-2im/n

 resultn/2+m= evenm-oddm*e-2im/n

 return result

To illustrate the processes, we first need training data on

which we can test the FFT. For the sake of simplicity, we

superpose two sine functions and add the value 3. Let's

take a look at the result.

We set the sample frequency to 100 Hz and determine the training

data.

19 Source: Wikipedia https://de.wikipedia.org/wiki/Schnelle_Fourier-Transformation

6 Math related Examples 68

So this is what the function looks like. To the second

column of training data - the sampled function values - we

apply the FFT algorithm as described. We can transfer it

directly to SciSnap!.

If the vector passed has length one, it is returned as a

complex number in SciSnap! format.

The data is divided into two parts with even and odd indi-

ces, respectively, to each of which the FFT is recursively

applied.

The two halves of the result are put together as de-

scribed …

… and returned appended.

Das Ergebnis sehen wir uns für (hier: nur) 8 Funktionswerte an.

But what should we do with it?

6 Math related Examples 69

For a frequency spectrum, we are not interested in the total complex numbers, but (mostly) only their amounts.

We obtain these, for example, by converting the numbers into the polar form and then splitting off the imaginary

part - and the first column with the type at the same time. We scale these values in such a way that the amplitudes

of the partial functions result correctly, and before these values we insert the associated frequencies.

With the result we can have the frequency diagram

drawn. If we sample 4096 values with 100 Hz and run the

procedure as described, we get a nice spectrum.

The absolute term with the value 3 as well as the sine

functions of 1 Hz and 2 Hz with the amplitudes 5 are

clearly visible.

Fourier transformations must also be reversible (iFFT).

For this, the imaginary parts, the phases, are required af-

ter all. The SciSnap! block for FFTs therefore contains the

three corresponding options. With its help we get the

spectrum we are looking for much easier. And also the

meowing from the Snap! sounds ("cat") can be analyzed

quickly.

6 Math related Examples 70

FFTs are not only used for sounds, but also for image

processing. We take the three color channels of an image

as vectors, apply the FFT operation in each case and cut

off the higher frequencies, for example. The result is then

composed of three color channels created by iFFT from

the altered frequency values. The results are quite

"modern".

If you leave only 5% of the low frequencies, you can still

see a surprising number of details. So the higher

frequencies are responsible for the finer details.

With 2% it becomes already more difficult: an "Easter

picture".

 And at 1%? Have a guess!

Tasks:

1. Generate different function waveforms from sine/cosine functions. Then experiment with different sample

rates and numbers of sample points to generate frequency spectra. In each case, compare your results with

the expected result - which you know.

2. Create spectra of different sounds, e.g. from instruments, tuning forks, speech, singing, …

6 Math related Examples 71

6.15 A simple image compression method with FFT
In the last section we saw that images processed with FFT are actually still quite recognizable, even though a large

part of the higher frequencies has been "cut off". We can take advantage of this to reduce the storage space

required by images without losing too much of the image quality. However, it is still a lossy compression technique.

Parts of JPEG20 compression work similarly.

Our method shall work as follows: We specify a compres-

sion rate compressionRate and the costume of a sprite

as parameter image. Then we determine the pixels of the

image as imageData. Now we can calculate how many

frequencies should be "valid" at the desired compression.

We call the result numberOfValidFrequencies. The re-

maining numberOfEmptyFrequencies are later set to

zero and used to "fill up" the FFT result to the correct

length. To halfway preserve the contrast range of the orig-

inal image, we also determine the value ranges of the

three color channels rangesRed, rangesGreen and

rangesBlue. Together with the width and height of the

image, we store these data, from which the image is later

reconstructed, in a list. We add the FFTs of the three colors

to this list, but we only store the "valid" number of them.

The compressed image thus has the format:

We can assign this data to a variable and export its con-

tent, for example, or we can write directly to a file.

When decompressing the image, we have to read the stored data and fill the three color channels with the com-

plex number zero. After that, they are transformed back into real number sequences with iFFT and assembled

into pixels. We afford ourselves some additional luxury: since we have stored the original value ranges of the color

channels, we stretch the colors, which are also reduced by the reduced number of frequencies in their value range,

back to the original range.

20 https://de.wikipedia.org/wiki/JPEG

width height

numberOfValidFrequencies numberOfEmptyFrequencies

min red max red

min green max green

min blue max blue

data of the three color channels as complex numbers

6 Math related Examples 72

read out and delete image dimensions

read number of valid or deleted frequencies

and delete

read out and delete original color ranges

create a list with complex zeros of the correct length

iFFT for the red channel

determine current limits of the red color channel

expand the red channel to the original values and insert it into

the pixel list

iFFT for the green channel

determine current limits of the green color channel

expand the green channel to the original values and insert it

into the pixel list

iFFT for the blue channel

determine current limits of the blue color channel

expand the blue channel to the original values and insert it

into the pixel list

insert transparency values and export the costume

6 Math related Examples 73

 For the test we give Hilberto a picture as a costume and compress it increasingly.

There we go!

Tasks:

1. Experiment with different image types (portrait, landscape, ...) and compression ratios.

2. Learn about compression methods for images and other data.

3. Invent better compression methods for images, e.g. by not simply truncating frequency ranges, but by limiting

yourself to the "essential" frequencies, …

6 Math related Examples 74

6.16 A simple sound compression method with FFT
Since all data must be in digital form, it doesn't really matter what kind of data is processed with the FFT. So we

can compress sound data just as well. It is even easier if we limit ourselves to one channel. Again, this is a lossy

compression method. Parts of the MP3 compression21 work similarly.

Our method should work as follows: We specify a com-

pression rate compressionRate and a sound as parame-

ter sound. Then we determine the samples of the image

as samples. If it should be a sound with several channels,

then we take from these only the first one. Now we can

calculate how many frequencies should be "valid" for the

desired compression. We call the result numberOfValid-

Frequencies. The remaining numberOfEmptyFrequen-

cies are later set to zero and used to "fill up" the FFT result

to the correct length. The compressed sound thus has the

format:

When decompressing the sound, we have to read the

stored data and fill up the sound data with the complex

number zero. After that they are transformed back to real

number series with iFFT and returned as reconstructed

sound.

Up to a compression of about 15% I hardly hear any differ-

ences. But maybe you are younger.

Tasks:

1. Record music, speech, other noises as sounds and convert them to WAV files. Import the sounds to SciSnap!.

2. Experiment with the compression method. Have the results evaluated by different people.

3. Learn about the MP3 (and other) compression method for sounds.

21 https://de.wikipedia.org/wiki/MP3

sample rate

numberOfValidFrequencies

numberOfEmptyFrequencies

sound data as complex numbers

7 Data related Examples 75

7 Data related Examples

7.1 Data plot of points scattering around a function graph

We create some data points close to the graph to 𝑓(𝑥) =

𝑥3 − 𝑥 and plot them on a PlotPad. To make them appear

nicely ordered, we sort the points before creating the plot,

and because it's Sunday, we connect them in rainbow col-

ors.

7 Data related Examples 76

7.2 Histogram of random values

We again create random points scattering around the graph to 𝑓(𝑥) = 𝑥3 − 𝑥, but this time we choose only the

first column as the data set. From these values we let create a histogram with 10 columns.

7 Data related Examples 77

7.3 Plot of mixed data

Text data are often combined with numerical data. An

example would be the sales data of different

representatives in one year in an area. If we want to plot

these graphically, then, for example, the x-axis must be

labeled with text data, while the y-axis is treated as

before. To create the graph we use the add dataplot of

mixed data block of the PlotPad. In this case, the stage is

to serve as the PlotPad.

7 Data related Examples 78

7.46 NY CitiBike Tripdata 1: Correlations

As an example of how to use the blocks, let's "dig" a bit into a larger, freely available dataset: the New York CitiBike

rental data (NY citibike tripdata: https://www.citibikenyc.com/system-data).

We load the data, extract it, and get CSV data of

rather big a size, which we load "in one swoop"

into the SciSnap! data area, the SciSnap!Data

variable. We get almost 600,000 records.

Their column headers we split off from the table.

These data can be analyzed in very different ways. We will do

this later, but for now we will limit ourselves to the question of

whether there is a correlation between gender and loan

duration. Obviously, we only need columns 1 and 15 for this, so

we delete the other columns.

First of all, let's look at the mean values for the different genders

(0: unknown, 1 male, 2: female):

That's what we thought!

And what about the correlation? First, we delete the data

with the "unknown" gender. There are still about 340,000

data records left. For these, we calculate the correlation

coefficient between column 1 and 2 - and get the result

shown opposite.

And what does this number want to tell us now??? We

don't know - but we can read up and learn!

https://www.citibikenyc.com/system-data

7 Data related Examples 79

7.5 New York Citibike Tripdata 2: usage of bikes

Let's take a look at who actually rides a bike in New York. To do this, we

download the rental data from NY Citibike for a month onto the computer,

which are the almost 600,000 data records already mentioned. Let's take a

closer look.

Of course, we still need to find out from the source what the data actually

means - that is, look at the metadata. For the gender we learn that 0: un-

known, 1: male and 2: female. For the columns "tripduration" and "gender"

we determine some data:

We already know the average duration of borrowing, based on gender, from

the last example.

Let's see if they are lazier on Broadway:

I see. Probably Central Park is even worse!

All right. All prejudices do not have to be true.

Tasks:

1. But maybe only the women at Central Park ride their bikes more. Check it out.

2. There is not only one rental station at Central Park. Determine appropriate averages for the entire area.

3. Are there actually rental data for other parts of the city? Do a search and compare the results with Manhattan.

4. Determine the average borrowing times per weekday, in total and for individual stations. Are there differ-

ences? Why?

5. Above, the mean borrowing time was calculated in relation to gender. You could also do it the other way

around. Would that be complete nonsense or are there questions for which that would make sense?

7 Data related Examples 80

7.6 New York Citibike Tripdata 3: World Map Library

Even in New York, bicycling has become "hip" and the borrowing data can be loaded as CSV files. We do this as in

the previous examples with this dataset. Since we also want to create graphics, we configure a sprite as PlotPad.

Let's see where you can rent bicycles. For the overview we

extract the rental stations from the total list, e.g. by

grouping them by the name of the starting station (column

5) and selecting only this column as the result. We still get

337 stations. Since geographical longitude and latitude of

the borrowing stations are given, it makes sense to use the

World Map Library of Snap!. We write a small block for

this, which displays the surroundings of a borrowing

station as a map.

After that, we look for the data of a station ...

... and thus set up the list of coordinates of the stations22.

With this data we can send Hilberto to the individual

positions and ask him to leave circles there with the

stamp block, for example.

At least in midtown Manhattan, I don't think we have to worry about finding a borrowing station!

22 This will take some time!

7 Data related Examples 81

7.7 New York Citibike Tripdata 4: Lending diagrams

Let's take a closer look at the rental station Broadway -

corner 41 Street (No. 465). To do this, we pull all records

from the total list that start or end at this station. That's

5054 operations this month. Times are entered in this list

along with the date. We can throw this out (split with " ")

and reduce it to the hour (split with ":"). We then have a

numerical scale with the unit "hour". Now we can see

what is going on at the station in the individual hours of

the day.

And we can represent this graphically as usual. We

simply count how many there were in each hour of

the day.

From this we build a diagram.

7 Data related Examples 82

Of course, we can combine that into one block, still leaving open the decision of whether we want to record

borrowings, returns, or both.

lendings

returns

both

aggregate data

create diagram

A few streets away, it looks very similar. Is this a general

pattern?

Well, at Central Park people get up later and the tourists are not there yet. But the museums always close at the

same time.

7 Data related Examples 83

So, what can our programs learn from this data?

• For example, we could predict from the usual departures and arrivals as well as the actual stock whether enough

bikes will be returned to a station in time or whether it would be better to transport some there.

• We could determine from mean path lengths which batteries are being used for eBikes.

• We could determine whether women or men are more likely to borrow the bikes at a particular time of day and

then make sure the supply is right. We could do the same for the age of the borrowers.

• We could determine the borrowing data per bike and predict when repairs will be due. We could also do this as

a function of the location of the stations, for example.

• We could try to generalize distributions from some stations so that predictions for others can be derived from

them. So, when museums close at Central Park, the program can "learn" from the old data in which districts

bikes are likely to be dropped off and when and warn if there are not enough free slots there.

etc.

Tasks:

1. Break down the stations' activities according to arrivals and departures.

2. Write a forecasting function that warns when there is a threat of a bike shortage at a station in the next few

hours.

3. For specific stations, graphically represent the connections to the most selected drop-off stations on the map

by direct lines. Choose line thickness according to the number of borrows and colors according to the station.

Do clusters form?

4. With the help of correlations, determine whether there are correlations in the borrowing behavior (e.g. with

regard to the times of day, the location, ...) with the gender, the age, the status of the borrowers. You may

need to replace the data with numerical data beforehand - similar to the times. Discuss possible consequences.

5. For a small section of Midtown (where everything is nice and rectangular), determine the coordinates of the

street corners. Then develop a router that shows the shortest path to the nearest Citibike station.

6. Borrowing rates depending on the time of day show some

differences in different areas of Manhattan. Examine simi-

larities and differences systematically and try to explain the

results.

7 Data related Examples 84

7.8 Income data from the US Census Income Dataset (Quelle: [Census])

We want to dig into some data and therefore download the Census Income Dataset from the net.23 The corre-

sponding CSV file can be loaded from the file directory in SciSnap!Data and displayed immediately. It contains

32562 records. Double-clicking or right-clicking on it and selecting "open in dia-

log..." shows all columns.

Which correlations could be found in this?

Our data blocks don't help that much at first, because they mostly process numeric data. If we want to use them,

we have to scale the columns in such a way that numerical contents result. In the simplest case, we replace texts

with numerical values - and should think carefully about what consequences this might have with regard to their

interpretation.

Let's start with the last column: Income values are given

for only two ranges: less than or greater than $50,000. We

assign values 1 and 2 to these ranges. (Or 0 and 1, or -1

and +1, or 0 and 100, or ...

Would these changes have consequences? To avoid changing the original data, we create a

variable income and store the changed values there by copying column 15 (income) without

the first value (the heading) into this variable and then using the map...over... block to change

the contents. Anyway, that's what we try to do. Unfortunately, when we look at the result again

as a table, we only get the unchanged column 13.

What's going on? We look at the first element of in-

come and check if it is a string. It is, but it is longer

than we thought:

If we split them at the spaces, we see what's going on:

leading spaces have crept in. Those crooks!

23 This is one of the training datasets for machine learning.

7 Data related Examples 85

So we have to throw out the

leading blanks before. This works

now: our variable income now

only contains the values 1 and 2,

as we can quickly check by

looking at it.

What does this income now depend on?

Maybe from age? We combine column 1 (age) and our

modified income column into a new table called testdata.

We describe the relationship between age and income by the correlation

coefficient. The calculation is simple:

And what does that mean?

Tasks:

1. Find out the meaning of the correlation coefficient and interpretation of the obtained value. What does the

value "0.2340..." mean?

2. In this case, does the correlation coefficient depend on the type of numerical scaling of the data (1 and 2, -1

and 1, ...)? Check.

3. Determine other correlation coefficients, e.g. between education and income, country of origin and income,

marital status and income, country of origin and occupation, ...

4. Find out if and when the scaling of non-numerical data can have an influence on the result.

7 Data related Examples 86

7.9 Covid-19 data analysis

We upload the Johns Hopkins University Covid-19 data

from 2020/3/1 to 2020/4/19 for four counties to the data

section of SciSnap! and get:

Since we are only interested in the pure data, we pick out

the relevant data range for a country.

Let's first get an overview of this:

Then let's try it with a semi-logarithmic representation …

… pick out the two interesting columns …

… and fit the graph: We show the semi-logarithmically plotted data and the regression lines for the two halves of

the data.

7 Data related Examples 87

 That's when hope arose!

Tasks:

1. Plot the data for the other countries as well.

2. Try to determine whether there are correlations between the data series.

7 Data related Examples 88

7.10 Star spectra [UniGOE]

Stars shine in different colors because they have different

temperatures. In addition, the spectra differ in their

absorption lines. We want to investigate this a little more

closely.

We get some star spectra (source: [UniGOE]) and save them as a text file. We

read such a file and split it into a list data. The first line contains the star name

after the column labels. We isolate it and save it as starname.

We now know what the star is called. If you search for it

on the Internet, you will find a lot of information about it.

So that we can repeat the loading process with other data,

we encapsulate it in its own block. After its execution, the

actual star data are available as a lightly prepared table.

Unpleasant about it is the strongly different magnitude of

the data in the two columns. We therefore normalize the

second column using the mean value and store the result

as normalizedData.

The normalized data can be used to quickly create a plot

on a PlotPad.

7 Data related Examples 89

One can see well the sloping course with some striking absorption lines. But do we need all spectral data at all for

this insight? Maybe it is enough to reduce the amount of data by averaging. We introduce a compression factor

compressionRate and complete the script before the diagram generation.

The factor 5 does not change much. So let's keep trying.

It can be seen that the temperature-dependent course of the spectrum is hardly changed. Only the absorption

lines are lost. Thus, the type of the spectrum should be described by an interpolation polynomial of e.g. 4th

degree.

7 Data related Examples 90

So, this works very well! If we log the polynomial parameters at the same time during the examination, then we

can easily distinguish the star types on the basis of the parameter ranges.

If you feed a neural network with the polynomial coefficients, it quickly learns to roughly assign a diagram to a

star type. The program can "learn" on the basis of the old data which parameter intervals belong to which star

classes. If one enters the data of a new star, then it determines the coefficients of the polynomial and gives after-

wards a well-founded prognosis, around which kind of star it could concern.

Tasks:

1. Set up an interpolation polynomial of as low a degree as possible for each of the uncompressed spectrum data.

Which points should be chosen for this? Are there any differences between these polynomials and the results

of the procedure shown above?

2. Develop a script that assigns an unknown spectrum to one of the types that have appeared so far.

3. Develop a procedure to examine the most prominent absorption lines in more detail. Plot them magnified for

stars of the same class and try to determine differences "automatically". Discuss your ideas before realization.

7 Data related Examples 91

7.11 Flu wave simulation

We want to simulate an influenza wave in the simplest possible way, controlled by only two parameters: Sero-

conversion time is the time between infection and transition to immunity, and the infection radius indicates the

distance at which other people are infected. Other parameters such as the probability of infection should be

added. The simulation consists of 200 "persons" of only one species, symbolized by colored circles: Green for

healthy, Red for infected and Yellow for immune. The individuals scurry around, encountering and infecting each

other. After the seron conversion period, they become immune. Hilberto has little to do: he sets a few initial

values and logs the percentage of infected at one-second intervals. If needed, he can generate a graph of the

recorded data.

Somewhat more active is a person, so a sprite that serves

as a template for the other 199 clones. Since these are

supposed to be healthy at the beginning, it assumes the

"healthy" costume, creates the clones, resets the timing

and gives a start signal. It also changes to the "sick"

costume. Thus it is the starting point of the infection.

The generated clones take a random position, set their

speed to a random value and the previous disease

duration to -1, because they are still healthy.

7 Data related Examples 92

After receiving the start signal, a person turns a little and

moves. If it hits the edge, then it bounces off it.

If the person is sick, then he determines his neighbors. If

they are healthy and close enough, then they get sick.

If the person has been sick for a while, then see if the se-

roconversion time is up. If it is, she become immune.

That's it!

 A typical diagram of the course of infection:

Tasks:

1. Persons do not fall ill every time they come into contact with diseased persons. Introduce a probability of

infection.

2. There are different persons, e.g. those who wear protective masks - or not. Take this into account in the simu-

lation.

3. People's mobility is also different, some stay mostly at home while others travel around the world. Take that

into account in the simulation.

4. Viruses also evolve with time. Every now and then, mutations arise that cause a different likelihood of infection.

Take this into account in the simulation.

8 Graphic related Examples 93

8 Graphic related Examples

8.1 Simple random graphic

We simply draw 100 randomly chosen graphic elements on top of each other.

Tasks:

1. Search the web for images by Piet Mondrian.

Try to create similar random images on the Im-

agePad.

2. Using a "vanishing point", you can create im-

ages in which objects appear to move "from

back to front". Try it.

8 Graphic related Examples 94

8.2 False color image of a lunar crater

We import the image data from a FITS file and then display it as a false-color image.

8.3 Slice through an image of the lunar crater Tycho
https://www.spektrum.de/fm/912/thumbnails/Mond0.jpg.2996657.jpg

8 Graphic related Examples 95

8.4 Shadow lengths in the lunar crater Tycho

We create an image of the lunar crater on an ImagePad, import its data and create a slice through the image

using the mouse. We plot the data values of the section line on a PlotPad. From this and some additional data,

the shadow lengths can be calculated.

Representation of the crater image on the ImagePad.

.

Data recording with the mouse.

Conversion of RGB values to gray values.

Data compression with a factor of 5.

Generate a plot on a second sprite configured as a Plot-

Pad.

8 Graphic related Examples 96

8.5 Display of image data as histogram

An RGB image is loaded, decomposed into grayscale, and

the normalized distribution of the image values is dis-

played as a histogram on a new PlotPad. We find the ac-

tual image as the costume of an additional sprite called

"ThePicture".

First of all we load the image into the data area

SciSnap!Data:

We obtain 120,000 RBG values.

We convert these into gray values.

Then we create a PlotSprite as a clone of the current sprite and configure it as a PlotPad. On this we create the

histogram.

Tasks:

1. Search the web for different sets of data. Display them or parts of them graphically.

2. Automate histogram generation by adding a new block histogram of <costume>. Compare the histograms of

typical image types. To what extent is it possible to compare images in this way, or where might difficulties

arise?

3. In the same diagram, represent the three colors of an RGB image by graphs and/or histograms.

8 Graphic related Examples 97

 8.6 Simulation of a planetary transit in front of a sun

We look for a nice picture of the sun (source: [SchulAstro])

and load it as a costume of a sprite. To make it look more

like outer space, we enlarge the stage and color it black. If

we also draw the planet, we get the following picture.

The planet should pass in front of the sun as a black circle.

When we draw such a circle, we change the actual image

of the sun. Therefore, we draw a copy newCostume from

this image, on which we draw after that. Our planet should

move from the very left a little bit outside of the image

(x=-2r) to the very right (x=image width+2r) on the

height y. We can also specify the radius r of the planet.

We can determine the current brightness of this arrange-

ment without too many copying processes by subtracting

the brightness of the pixels covered by the planet from the

total brightness determined at the beginning. For this pur-

pose, we import the image of the sun into the data area

myData and determine the brightness around the center

of the image in the radius "half image width" as well as the

number of pixels involved. brightness around provides

the summed gray value as well as this number. From these

values we calculate the average brightness of the "slightly

darkened" sun and store it together with the current posi-

tion in the variable transitData.

Parallel to the transit, a diagram is to be created in which

we can follow the results "live". For this purpose, we cre-

ate another sprite, which we call PlotPad and which we

configure accordingly. We wrap the necessary commands

for this in a block called new transit diagram.

8 Graphic related Examples 98

Then we write a block that determines the brightness data

as described and refreshes the diagram in parallel. The

result corresponds roughly to one of the methods used to

find exo-planets.

8 Graphic related Examples 99

8.7 Affine transformation of an image

In the ImagePad library we find a block that allows to

make affine transformations in an image by mapping three

points to three others - and all other points accordingly.

The current costume of a sprite is taken as the image.

We want to mirror an image vertically at the center line.

We load the image - here: of a church - and select corre-

sponding points at the edges. These combine them to the

two lists source and target.

Finally, we create a clone of the ImagePad and ask it to

display the transformed image as a costume.

8 Graphic related Examples 100

8.8 Kernel application for edge detection

We configure a sprite as an ImagePad and change to the

costume of an ancient temple. We import this image into

the myData data area of the ImagePad.

On this image data we apply the Laplace kernel

[
1 1 1
1 −8 1
1 1 1

] using the block convolution kernel applied

of the Data tools and store the result in the variable data.

We display the result as a new costume. For comparison,

a second sprite represents the original image.

Tasks:

1. Images are sometimes a bit "flat". This is because they do not use the full range of values for the three color

channels from 0 to 255.

 a: Develop a method to determine and display the value range of an image.

 b: Develop a method to exploit the full range of values, i.e. map black pixels to 0, bright pixels to 255.

 c: Summarize the method in a new block, which is passed the costume of a sprite and returns the improved

costume as result.

2. a: On pictures, you can try to find "faces" by highlighting related areas of a color range, e.g. "orange", and

erasing the rest of the picture. Try to develop a new block for this.

 b: Using a kernel, the edges of such areas can be isolated. Find out about suitable kernels on the web, for

example, and try them out for the purpose mentioned.

 c: Faces are often "oval". Try to distinguish faces from other "orange" objects in this way.

3. a: Really artistic photos are black and white, of course. If you don't have any, you can create grayscale images

from RGB images. Do this.

 b: It looks even more artistic if the photos are "hard", that is, have a very strong contrast. Experiment a bit!

8 Graphic related Examples 101

8.9 Diffusion in the grid model

If you put some paint into a container of water, the paint particles slowly disperse into the surrounding water.

This is called diffusion. We can imagine the process as an exchange process in which paint particles exchange

places with water particles - and of course particles of the same kind also exchange places, but you can't see that.

In the grid model we symbolize water particles with the

value for blue (9) and color with the value for red (4). We

configure a sprite as ImagePad and initialize the grid with

dimensions 400x400. After that all grid cells get the value

9 and then the ones in the center get the value 4. The grid

can now be displayed - with a red "block of paint" in the

center.

After that, diffusion starts by randomly swapping the

values of the grid cells with neighbors. For one cell this is

a simple process, but for our 160,000 cells it is a bit

complex. SciSnap! therefore has its own block, which

executes the process of this "heat movement" for all cells

n times:

We simply assign the result to the data area of the grid

myData and redisplay the result. We repeat these

operations again and again.

Overall our script is: And after a few cycles our color spot looks like this,

for example:

8 Graphic related Examples 102

8.10 Ferromagnetism as a Grid Automaton

Self-organization processes often occur in cellular autom-

ata due to the interaction of neighboring cells. We want to

build a simplified version of the Ising model24 of ferro-

magnetism. To do this, we imagine a grid of small elemen-

tary magnets, e.g., atoms with a magnetic moment, ran-

domly oriented up or down. We encode the direction with

the colors green (7) and red (4). So, the beginning of the

script is very similar to the previous one.

Now we assume that elementary magnets are

opportunists: their behavior simply follows the majority of

their neighbors. If the majority of elementary magnets in

the neighborhood is oriented upwards, then the small

magnet will also be oriented upwards, otherwise it will be

oriented downwards. Because such queries are common

in lattice automata, there is an own SciSnap! block.

The term "noise" is used to describe a noise that randomly

"tilts" the specified percentage of cells.

Thus, as in the last example, the new states of the lattice

automaton can be repeatedly calculated and displayed.

Altogether we get the following script and after some

passes the displayed result, in which "intertwined" larger

areas arise, which align themselves in an external

magnetic field and strengthen it. The grid behaves like a

ferromagnet. Strong noise, which physically corresponds

to an increased temperature, disturbs the magnetization

until it collapses at high values.

24 https://de.wikipedia.org/wiki/Ising-Modell

8 Graphic related Examples 103

8.11 Conway´s Game of Life

A famous example of cellular automata is the Game of Life by John Horton Conway from 1970(!!). It consists

of a two-dimensional cellular automaton containing living cells (black) and dead cells (white). The game proceeds

according to three rules:

Rule 1: a white cell with exactly three black neighbors becomes black (alive).

Rule 2: black cells with less than two black neighbors die of loneliness, so they become white.

Rule3: black cells with more than three black neighbors die of overpopulation, so they become white.

Other cells do not change.

With the SciSnap! blocks for grids it is easy to create a

Conway automaton. Instead of filling it randomly with

values, we could also just create white cells and then

change cells with the mouse:

Since the three rules should only have an effect on the

following generation, we have to partially cache the

results. We create a variable additions for this purpose.

We fill this variable with the newly created cells. For this

we apply rule 1 to the grid and subtract the old values:

The following are the "Robinson rule" 2 and the rule 3 for the "lemmings".:

After the many dead, the new cells are added to the result:

8 Graphic related Examples 104

 From this we build the overall script and run the game. After a few generations, stable patterns and objects that

move are formed. Use your mouse to create patterns that you expect to be special (or search for them on the

web).

8 Graphic related Examples 105

8.12 A cellular automaton as a soft focus device

In some cases, it is desirable to modify an image as a whole or in parts, e.g. to run a soft focus over it that creates

an adjustable blur. One reason could be to make faces or car license plates unrecognizable. We will try this with

our grid operations.

First of all, let's choose a nice picture, here of New York at

night with dimensions 600x400, and represent it as a

sprite costume.

Since our grid only takes simple numbers, we turn the

image into a grayscale image, use it as a new costume, and

import it back into myData. We save the result in the

variable data.

Now we get really serious. We create a grid with the image

dimensions, select the first column of the saved image

data (the remaining two color columns are identical, after

all) and transform it back into a matrix - with reshape. The

result ends up in myData. Thus suitable grid values are

available.

We can now apply one of the grid operations to this grid.

We decide to take the mean values of the surrounding cell

values in radius 4 as new cell values. This should create

some blurring without making the image unrecognizable.

We now reassemble an image from the grid values by con-

verting the grid back to a single column (with reshape),

appending two identical columns to it and the transpar-

ency value per row 255. The result then corresponds to a

Snap! pixel representation of a costume. We therefore

display it directly on the sprite.

8 Graphic related Examples 106

The entire script then is:

 range 4, mean

 range 10, mean

 range 4, max

Tasks:

1. Scale the gray values to the range 0 to 9 (that of the nine grid colors) and display the image as a color image

in the grid.

2. Find a picture with faces. Make only the faces unrecognizable.

3. Find a picture with car license plates. Make only the license plates unrecognizable.

4. Experiment a bit. Maybe it will become real art!

8 Graphic related Examples 107

8.13 Linear Wolfram automata

One of the most famous examples from the field of cellular automata are the linear automata of Stephen Wolf-

ram25. A linear grid automaton is a series of cells that can take two different values, which we can choose to be 0

and 1. Wolfram always considers three adjacent cells, constructs a dual number from the three cell values - which

in this case can only be between 0 and 7 - and assigns a number to the subsequent state of the middle cell of this

combination, which is 0 or 1, respectively. With these specifications there are 28=256 different linear automata of

this kind. The number of the automaton indicates directly its functionality. Wolfram draws below each other the

respective assignment of the grid cells. The temporal order then runs from top to bottom and results in a two-

dimensional grid. Inform yourself about the details of the processes elsewhere.

Since Wolfram automata are quite computationally

expensive (and so interesting), there is a separate

block for them in SciSnap! With its help, we quickly

create a script that generates and displays all Wolfram

automata one after the other. As "seed" for the

automaton we choose a single 1 in the middle of the first

line. Enclosed are some results:

25 [Wolfram]

9 SQL Examles 108

9 SQL Examples

9.1 Working with the SQL library

The SQL tools can be used to access either one of the

sample databases or other data sources. The configure

SQL block creates a global variable SQLData and sets

some preferences. The block connect to database

server connects to the server of the sample databases. If

the sprite Hilberto with his costumes is available, then it

changes into a server symbol and shows by a "lamp"

whether the connection is established. If you want to use

other servers, you have to change the server address and

other settings in this block. With read databases you get

a list of available databases. Select one of these with

choose database no. ...

In practice you need the details of the tables of the used

database all the time. If you assign the table attributes of

a variable one after the other and display them with "open

in dialog", you can place the corresponding table data in

the SciSnap! window and start with the queries.

Example: The course title and rating for all of a learner's

courses, sorted by grade in descending order,

are searched for.

Example: For statistical purposes, the schueler table is to be

searched according to different criteria.

9 SQL Examles 109

9.2 Simple SQL query

We want to ask the topics of all English courses in a school database.

9.3 More complex SQL query

Request to a school database: search for the best results in English.

10 Graph Examples 110

10 Graph Examples

10.1 Mean distance in a random graph (small worlds)
We calculate the mean distance of the vertices in a graph

where first all vertices and then all edges have been

created.

10.2 Mean distance in a scalefree graph (small worlds)

We compute the average distance between the vertices in

a graph where alternating vertices and edges have been

created.

10 Graph Examples 111

10.3 Edges per vertex histogram in a random graph

10.4 Edges per vertex histogram in a scalefree graph

10 Graph Examples 112

10.5 Breadth and depth search in a family tree

We create a family tree as a directed graph without edge

weights simply by arranging and connecting the

appropriate vertices. This is cumbersome, but simple. Just

some fiddling.

In this tree we can now solve all kinds of tasks. For example, we could ask whether a person is an ancestor of

another. For this we need the number of the start node, which we determine with

. The rest is done either by the block for the breadth search or

the block for the depth search.

10 Graph Examples 113

In breadth first and depth first search, the visited vertices are marked and become red when the graph is re-

drawn. This shows the differences of the two search methods quite clearly.

 Depth first search Breadth first search

Tasks:

1. Determine the number of generations the relationship exists, if it exists at all.

2. Make lists of a person's relatives, e.g., parents, grandparents, aunts, brothers-in-law , …

3. a: Develop a script for creating a decision tree, e.g. for classifying animals or plants: In each case, it is asked

whether it is a particular specimen or, if not, what question can be used to distinguish the named one from

the current one ("Does it have four legs?"). Either the specimen or the question is entered into the tree.

 b: Let others test your result. Try to estimate from what amount of data in the tree it would be senseful to use

such a program.

 c: Decision trees play a role in certain applications of machine learning (Decision Tree Classification). Learn

about the method and its applications.

10 Graph Examples 114

10.6 A graph lab

To be able to experiment with graphs easily, we build a

small graph lab that allows to set the parameters of the

graph - i.e. to be weighted, directed, ... - directly. The lab

uses the stage as a GraphPad. Everything is controlled by

Gundolf de Jong, the gifted young mathematician.

We want to insert a few buttons to be used either as a

simple button or as a switch. To make it not too compli-

cated, we build a simple template. Each button has an in-

scription, can be activated (or not) and can serve as a

switch (or not). According to these specifications, a cos-

tume of the right size can be created, which the button,

configured as ImagePad, will display. For the buttons, the

possibility to move them (draggable) should be turned off.

The activity of the button is largely realized by calls to the

GraphPad blocks. These are simply attached to the cor-

responding script. On mouse clicks on the stage, it then

reacts to the presets.

For example, if the button for inserting nodes is activated

in the place of a mouse click, then the stage can cause the

appropriate thing to happen.

10 Graph Examples 115

10.7 Tree search in the graph lab

We set the parameters for a tree: directed edges, starting

node size 10. Then we position some nodes using the

mouse (vertex by mouseclick), enter their contents

(change content), which are not ordered, and then

arrange the nodes with the mouse so that the edges are

visible and the contents are readable (move vertex).

In this tree, starting from the root, we search for the node

with the content Barcelona, once by breadth first search,

then by depth first search. To do this, we call the

corresponding block and repaint the tree. The nodes

marked during the traverse are then displayed in red. With

the help of the block remove all markers of Graph they can

be removed again.

The same with depth first search:

10 Graph Examples 116

10.8 The graph lab with world map library

We load the Word Map Library, set the current location and a suitable

zoom factor. On it, we want to create the graph of the closer

surroundings, in which we will determine the most favorable paths

between the locations. The graph should not be directed, but it should

roughly show the relative distances. We get the following picture.

In this we first click on the places that are relevant for our

traffic network (vertex by mouseclick), especially the

cities. Then we create the desired edges (edge by

mouseclick).

Where we can of course also display the vertex numbers

(show content).

With the help of the graph, various questions can now be

answered:

• How far is it (in our units) from Braunschweig (#4) to

Siegen (#14)?

• How far is Hannover (#21) from Erfurt (#17)??

• After we have entered at least one city name …

… we can start a breadth first search from Münster (#7).

• Where to go from Jena (#18)?

11 Machine Learning Examples 117

11 Machine Learning Examples

11.1 A simple perceptron as a graph

We want to ask Hilberto to use a GraphPad to illustrate

how a simple Perceptron 26 works. To do this, he is to

place three input nodes on the left of the image. in the

middle sits the actual perceptron with a jump function

that transmits either +1 or -1 to the output neuron on the

right of the image. All in all, this is a directed graph with

edge weights. Hilberto sets this up quickly: he creates a

new sprite called Perceptron and configures it properly.

Then he adds specified vertices of the perceptron net.

Only the edges are missing, first with random weights.

Hilberto assembles the blocks into a script and labels the

whole thing, and of course he ensures a consistent situa-

tion by letting the perceptron compute through once.

26 https://en.wikipedia.org/wiki/Perceptron

11 Machine Learning Examples 118

The output of the network is determined by multiplying

the values of the input neurons by the corresponding edge

weights and summing the results. After that the result is

compared with the value of the jump function in neuron

4. Depending on the result, the value of the last edge and

the value of the output neuron is set.

However, the perceptron is also supposed to work in the

following way: when an input neuron, i.e. a vertex on the

left side, is clicked, it is supposed to change its value. To

do this, we convert the mouse coordinates when clicked

into sprite coordinates and then ask for the node number.

If it is one of the three input neurons, then we change its

value - and let recalculate.

Ready.

Hilberto himself is amazed that it can be done so easily.

Tasks:

1. Add a way to change the value of the jump function of the central neuron.

2. Add a way to change the edge weights of the three input neurons to the central neuron.

3. Change the edge weights and/or the jump function so that the perceptron works as an AND.

4. Change the edge weights and/or the jump function so that the perceptron works as an OR.

5. Change the edge weights and/or the jump function so that the perceptron works as an NAND.

6. Change the edge weights and/or the jump function so that the perceptron works as an NOR.

7. Can the perceptron also work as an XOR? Try it!

8. Search the literature for reasons why some circuits can be well realized by perceptrons and others not.

11 Machine Learning Examples 119

11.2 A simple learning perceptron

We now change the configuration a bit to teach the perceptron

how to learn. To do this, we introduce another vertex, a "target

vertex", under the output vertex, which displays "the correct"

results, which in turn can be changed by clicking on it. If there is

a difference between the values of the output vertex and the

target vertex, the weights are changed until the "correct" result

is obtained.

What to change?

When creating the net, only the new vertex must be inserted.

And at the click event on the GraphPad it has to be

checked if a vertex or the pad was hit. In the second

case, learning starts.

11 Machine Learning Examples 120

And how is learned?

If the values of the two neurons on the right of the image

differ, then we change the weights on the edges of the in-

put neurons until the correct result is obtained.

More precisely: We give a value to each of the three input

neurons. Then, we set the desired value on the target neu-

ron by clicking on it as well. Finally, we click anywhere on

the GraphPad and watch it learning.

Tasks:

1. Add a way to implement learning by making changes to the value of the jump function in the inner neuron.

Does this always work?

3. Train the network so that the perceptron works as an AND.

4. Train the network so that the perceptron works as an OR.

5. Train the network so that the perceptron works as an NAND.

6. Train the network so that the perceptron works as an NOR.

7. Can the perceptron also work as an XOR? Try it!

11 Machine Learning Examples 121

11.3 Training of a neural network

A neural network of width 4 with two layers (plus input

layer) is generated and trained to deliver as output a 1 on

the left and a -1 on the right, with zeros in between, when

the vector of numbers 1 to 4 is input. It is to be noted that

not the exact output values, but on the left the largest and

on the right the smallest must be supplied.

The output of the net before training:

Training states after every 20 training steps:

The output of the net after training:

The positions of the largest or smallest value of the output can be determined directly using the Math tools:

11 Machine Learning Examples 122

11.4 Traffic sign recognition with a neural network of perceptrons

"Deep" neural networks dominate the discussion about current "artificial intelligence". These are mostly "fully

connected" networks consisting of several perceptron layers. "Fully connected" means that all neurons in one

layer are connected to all of the next layer. Each connection is assigned a weight that indicates its influence on

the connected perceptron - but you'd better read about that elsewhere.

Let's consider a network consisting of three layers, which receives as input the pixels of an actual 20 M pixel photo,

i.e. 2x107 pixels. The input layer consists of 3x2x107 MB numerical values between 0 and 255 (if we omit the

transparency byte). To the next layer there are then (6x107)2=3.6x1015 connections - and then two more times. In

total, 3x3.6x1015, i.e. about 1016 weights would have to be determined - a completely utopian task for "normal"

computers. So, we will have to limit ourselves to somewhat smaller neural networks.

One way to train perceptron networks is to present them input vectors and the desired output at the same time.

The network then computes the output resulting from the available, initially randomly chosen weights, and deter-

mines the difference to the given result. Starting from the last layer of results, it then "backpropagates" the

weights so that its output fits the given result "slightly better". This procedure is called backpropagation. You

should also read more about this elsewhere. The trained network results from many such corrections. "Learning"

therefore means to adjust the parameters (the weights) based on many examples. With the help of these param-

eters, the net determines an output vector from the input vector: it calculates a function value. Our Neural-

NetPad can simulate and train such perceptron networks.

The weights form a total tensor with m layers consisting of nxn matrices. NeuralNetPads should therefore mas-

ter linear algebra. The only new feature is the softmax function which can be used to scale

input vectors, for example. You should also inform yourself about this.

The dimensioning and initial assignment of the network

are done in the block add new weights. With this block

we can create a new neural net of any size with random

initial weights. In this case it has width 3 and depth 2.

Since displaying the many numbers would be rather

confusing and also hardly informative, the connecting

lines (the edges) are color-coded according to the values

of the associated weights: from full green for large positive

values to black for small amounts to red negative weights.

Since initially only positive numbers are drawn at random,

a new net is predominantly green. It shows what results

from the calculations with the input vector to be specified.

The vertices of the net are color coded like the edges. At the bottom, the elements of the input vector are shown

as small rectangles. The inner layers form colored circles and the last layer is again shown as an output layer in

rectangular form. The direction of the calculation from bottom to top is shown by the arrow on the far right. Since

you can easily rotate sprites, the direction can of course also be displayed differently.

11 Machine Learning Examples 123

A simple initial configuration would thus result in:

Often you need the results of the last or an inner layer of

the net. These can be calculated with the help of the out-

put of... block for a given input. Since the color coding

does not necessarily show the largest or smallest element

clearly, this can be determined with the help of the ...of

vector... block.

The training of the net is done with the help of the block

teach NN ... by backpropagation with a learning factor to

be specified. The learning factor may be somewhat larger

at the beginning, and then be reduced.

We want to train a neural network (NN) to recognize 12

different traffic signs. To do this, we search for images of

these traffic signs in the network and reduce them to the

format 100 x 100 pixels. Now they can be displayed well

on the screen, but the 10,000 pixels are of course much

too much as inputs for a NN.

To bring the amount of data within tolerable limits, we

reduce the pixels to a 2x2 format by mean-pooling, i.e.

we average the color pixels in each of the four quadrants

of the image. The 30,000 values of the traffic sign image

thus become 12.

Because it is a difficult problem, this time Alberto takes

the overall control.

11 Machine Learning Examples 124

To start, Alberto gives the NN sprite a new costume. Then

he creates the weights for a new (here: 12x1) net in the

NN. This he lets draw with a (still nonsensical) input. Then

he sends the NN to a well chosen place in the upper center

and does the same with the traffic sign below. Finally

some variables are set to 0. We will need them later.

Alberto first needs to reduce the amount of image values

using the pooling operation. To apply the operation, he

must import the image data. Then he can convert them,

delete the dimensions of the reduced image specified at

the front of the list, and return the result. We summarize

everything in a new block pooling of <costume>.

The color values of the reduced image are assembled by

Alberto into an input vector. These are modeled with the

softmax function of the Data tools in order to exclude

unfavorable input values.

11 Machine Learning Examples 125

Accordingly, the training vector in training data can be

determined with the searched output values of the NN. In

our case, all values should be 0 except for the one

corresponding to the costume number of the traffic sign.

The NN receives two new methods learn from... and test

with... When learning, the position of the place with the

largest output value of the NN is determined and

compared with the current costume number of the traffic

sign. If these values do not match, then learning

continues.

For testing, the same operation is performed only once.

Now we have everything together to let Alberto work

reasonably.

A teaching operation consists of determining a random

costume number with the corresponding costume change.

Then the learning process of the NN is started with new

input and target data. The passes are counted.

For testing, a similar procedure is followed: The costume

is changed and it is checked whether the NN calculates the

correct costume number. If this is the case, then everyone

is happy. The percentage of correct attempts is

determined.

Multiple learning and test runs can then be easily triggered.

11 Machine Learning Examples 126

After several hundred training runs with a higher learning rate and again with a lower one for fine tuning, we

achieve recognition rates of up to 100%.

Tasks:

1. Train a single-layer network with different learning rates and numbers of learning passes. Determine the recog-

nition rate as a percentage in each case.

2. Plot the results from 1. graphically using a PlotPad.

3. Experiment with multi-layer NNs. Will the results be better?

4. Increase the length of the input vector by changing pooling. Will the results be better?

5. Increase the number of recognizable signs by allowing more than one 1 in the output.

11 Machine Learning Examples 127

11.5 Under- and Overfitting

Machine learning uses training data to adjust the parameters of a function so that other values are predicted well

- if everything works well. So, you build a prediction tool, a kind of "telescope" for data.

One might think that the more customizable parameters a function contains, the better it is. But this is not the

case. On the one hand, (1.) more parameters require more training data and training runs, i.e. more learning time;

on the other hand, (2.) an "unsuitable" number of parameters can also prevent "good" solutions. For both we give

an example.

Re 1: In the neural network for traffic sign recognition (last example), we achieve very good results with one layer.

If we increase the number of layers and leave the number of training runs the same, then the recognition rate

decreases drastically.

Re 2: If the training data is well reproduced by the function, it does not mean that this is also true for other data.

It depends very much on the kind of function that is generated. As application we choose the example polynomial

interpolation.

The task is: With the help of training data, the coefficients of a polynomial are adjusted so that OTHER data are

predicted as well as possible.

To do this, we need to generate data that will be used to

calculate an interpolation polynomial. This time the task

is done by Hilberto. He generates data that scatter around

the parabola 0,5 ∗ 𝑥2 − 3.

We configure a second sprite next to Hilberto named

PlotPad as PlotPad and plot the data on it.

As a "workhorse" we choose the PlotPad. If necessary, we

import the required functionality from other libraries.

11 Machine Learning Examples 128

This is already enough to show the data.

We first try the interpolation with a regression line.

This actually looks quite nice, but it doesn't properly fit on

the sides.

So, we try it with a polynomial interpolation.

First of all, we choose three random pairs from the

training data, determine the interpolation polynomial and

draw it. Because we want to experiment further, we

generalize the solution to a polynomial through n points.

The results depend on which points were caught. Here is

a bad and a quite good result.

11 Machine Learning Examples 129

Now we're getting brave! Instead of three points, we

choose 5. After all, we want to do a good job! That works

halfway in the middle, and then - oops!

Maybe we just have to use more points. Let's try 10. The

polynomials run through more points, but they "take off"

at the edges.

Well, then with all the points!

You can see that as the degree of the polynomial in-

creases, there is more training data directly on the graph,

but that in between, the wild oscillations of the polyno-

mial only "predict" nonsense values.

The quality of what we learn therefore depends very

much on how we deal with deviations. We have to decide

which inaccuracies in detail are tolerable so that the fore-

cast as a whole becomes reliable. If the degree of the po-

lynomial is too small, we speak of underfitting, if it is too

high, of overfitting.

Tasks:

1. Discuss different ways of defining a "good" degree of the interpolation polynomial (i.e., its highest power).

2. Formulate your results so precisely that they can be realized as scripts.

3. Test the scripts on different data sets.

11 Machine Learning Examples 130

11.6 Classification in the HR-diagram accordimg to the kNN method

In the Hertzsprung-Russel-Diagram (see Wikipedia) the

luminosity of stars is plotted above their stellar class. The

result is a kind of line from left-top to right-bottom, the

"main sequence". On this line stars like the Sun are

predominant. Right-top above the main row we find the

red giants, left-bottom below the main row the white

dwarfs. That's enough for now. (Image source: [HR])

We want to classify new stars in this diagram using the k-

nearest neighbor (kNN) method: We generate as train-

ing data a list of stars with their coordinates (simply as im-

age coordinates in the diagram) and their type. If we want

to classify a new star, we determine its position in the di-

agram and find the nearest k (e.g. k=5) neighbors. Then

we determine the most frequently appearing star type in

this list. We assign it to the new star.

First of all, we need an image of the Hertzsprung-Russel-

Diagram ([HR]). We import this into Snap! as a costume

of an ImagePad and generate the required data from it.

Since we want to draw on the image, we work with a copy

of the HR diagram in order not to change the original.

We obtain the training data by specifying a star type and

then clicking on some points in the diagram that corre-

spond to this type.

After that we can classify new stars by clicking and labeling

them.

We set some properties for the display and draw a circle

at the location of the star. Then we determine the five

nearest neighbors and the number of occurrences of their

type. As a result, we delete the headings and sort the list

in descending order. The type of the new star is the first

element in the first line. We write this next to the star.

11 Machine Learning Examples 131

The result:

Tasks:

1. Add the newly classified stars to the sample list so that they are included in further classifications.

2. Draw different colored dots in the right places on the sprite for the different types of stars, instead of labeling

them.

3. Run the process for randomly selected points. Does the

same pattern always emerge? Do completely different

or similar patterns emerge? What does it depend on?

11 Machine Learning Examples 132

11.7 Decision trees according to the ID3 method

A decision tree reproduces the process by which "experts" arrive at a decision. A simple example is the children's

game "Guessing animals", where questions are asked one after the other ("Does it have four legs?", "Does it have

fur?", "Is it the Easter bunny?", ...), which exclude more and more animals until either one remains or there is a

dispute. In our case, the expert knowledge manifests itself in the form of classified data, where the classification

should be in the last column - for simplicity as a binary decision. From these data sets, a decision tree is con-

structed, which other, not yet "labeled" data can traverse in order to be classified. One method for constructing

such trees is the ID3 method (Iterative Dichotomiser 3) 27. It creates wide trees that can be traversed quickly by

calculating the entropy of the individual attributes.

A decision tree consists of nodes and edges that start from a root. The nodes connected layer by layer by edges

are either inner nodes, from which still further edges start, or leaves, which mark the end of a branch. In the

tree construction it must be decided in which order the attributes are used, which promises the largest infor-

mation gain at a certain point. Usually, the information gain is calculated with the help of the entropy, which gives

information about the "disorder" of a system. If we know the proportion p of an attribute value, then the entropy

S is defined as 𝑆(𝑝) = −𝑝 ∙ ln 𝑝. For an attribute A with n attribute values with proportions pi, the entropy is then

the sum of the partial entropies: 𝑆(𝐴) = ∑ 𝑆(𝑝𝑖) = − ∑ 𝑝𝑖 ∙ ln 𝑝𝑖
𝑛
𝑖=1

𝑛
𝑖=1 . The information gain that comes from

deciding on an attribute value is given by the weighted entropy 𝑔𝑎𝑖𝑛 ≈ ∑
𝑛𝑖

𝑛
∙ 𝑝𝑖 ∙ ln 𝑝𝑖

𝑛
𝑖=1 . You should look else-

where for the details of the procedure!

To construct and query decision trees, SciSnap! has three blocks in the Data tools. The entropy of a list is deter-

mined by the block , constructs the tree, and the tree is queried

with .

As an example, let's explore whether there are "secret"

relationships hidden from our untrained eyes in the

NYCitibike data you've already encountered. For example,

it could be that the borrowing data can be used to infer

the gender of the borrowers. Let's try it.

We load the full dataset with 577703 elements, which we

"smooth" somewhat by omitting the location data (lati-

tude and longitude), because the borrowing stations result

from the other data. We shorten the time scales to the

hour of the day, as in the other examples, and we delete

the unlabeled data (gender unknown :"0").

27 J.R. Quinlan, 1986

11 Machine Learning Examples 133

For training, use an abbreviated dataset with 1,000

borrowing records, i.e. to construct the decision tree. For

this we simply pull 1,000 records from the total dataset.

Then the ID3 tree is created from the data. This takes

some time, here: 35.2 seconds.

After that we test the tree with randomly selected data

from the training dataset. This should do the job.

It does.

Now we use the full data set with all records, of which 336,955 are still left after filtering. Maybe this

shows the incredible power of "artificial intelligence"??

Well. By pure guessing we would have been much better!

Either the AI we created, the decision tree, has no uncanny

power at all, or the data were unsuitable for the question,

or we are dealing with a typical overfitting, because the

training data are perfectly identified, but the rest almost

not at all. Look for the reason!

At least we learned how to construct and use a decision

tree. One must be grateful!

11 Machine Learning Examples 134

11.8 k-means-Clustering

The Data tools palette provides blocks for k-means clus-

tering, but they (of course) only provide the final result.

The method is used to distribute k centers among n data

points in such a way that the resulting k groups are as

evenly distributed as possible and the distances to the

centers are minimal. An example may be a housing estate

in which k distribution centers are to be established, e.g.,

for telephone connections or electrical energy. In this case

the Euclidean distance will be taken, but other metrics are

possible, e.g. along existing roads or the Levenshtein

distance.

We want to illustrate the entire process here. To do this,

we create a set of, for example, 100 random points with

"JavaScript coordinates" to which we append the cluster

number. This is initially "-1", because no clustering has

taken place yet. For this we create "k", e.g. 5, "centers".

Points and centers are displayed as circles or squares on

the stage. The colors, initially gray, determine the cluster

numbers.

 The sequence of commands

 results in the following picture, for example.

11 Machine Learning Examples 135

We number the centers and enter their coordinates in a

list centerPaths so that we can track their movements.

The k-means method now determines the nearest center

for each point and colors the points in its color.

Now the centers are moved to the center of the set of

points assigned to them. The new positions are entered in

the position list.

In summary we get:

In most cases, of course, we have not yet achieved an

even distribution among the centers. Therefore, the

procedure is continued until there are no more shifts in

the centers..

11 Machine Learning Examples 136

We get the result:

Using the existing blocks, we could of course have obtained the result a bit simpler - but just without representing

the process:

Let's take a quick look at the distribution of points among

the five clusters:

The result is encouraging. If it were a matter of distrib-

uting telephone switchboards, then the construction

crews could come now.

11 Machine Learning Examples 137

11.9 Clustering according to the DBSCAN method

The DBSCAN (density based spatial clustering of applications with noise) method tries to identify "density is-

lands" in the data space. Before starting the procedure, two parameters must be selected: a radius specifies up

to which distance points are to be considered "neighboring", and a minimum group size specifies from which

number on a group of points is to be considered. The process goes through all data points and determines their

neighboring points with the help of the radius. If enough are available, then all found neighbors are examined

again for neighborhoods. If these are large enough, they are added to the original one. In this way, a coherent

"point cloud" of related points is created - a cluster. If not all data points have been recorded, the next unprocessed

data point is added and a new cluster number is assigned.

We create a point distribution and select any point from

it. We count its neighbors within the radius (Figure 2) and

get 5 neighbors. If this is enough, we add their

neighborhoods to the original one - if they are large

enough (Fig. 3)..

This process continues until no sufficiently large new neighborhoods are

found (Figure 4). If some points do not have enough neighbors, then they

are called outliers (noise) and are not clustered (Fig. 4, gray dots).

As you can see, DBSCAN often forms different clusters than the k-means

method, as in this case. If one uses clustering to classify unclassified data,

a system may "learn" quite different things in unsupervised learning - de-

pending on the method used!

For somewhat larger data sets, it is useful to use the DBSCAN clustering for ... block available in SciSnap! which

works according to the following procedure.

2. 1. 3.

4.

11 Machine Learning Examples 138

So let's implement the procedure.

First, the set of points is created and assigned to the

SciSnap!Data variable. The points are drawn.

Then we set some initial values and draw the starting

point.

The first neighborhood is calculated and displayed.

After that, the DBSCAN procedure starts: For all points in

the neighborhood, their neighborhoods are determined,

checked and, if necessary, transferred to the old neighbor-

hood. If necessary, the generation of the next cluster is

started.

The two additional blocks used are …

 … and

11 Machine Learning Examples 139

11.10 Outlier detection according to the DBSCAN method

In many cases, it is not the clusters that are interesting, but rather the outliers, i.e. data that "do not

fit the grid", that are conspicuous. The DBSCAN method is well suited for this, because it does not

cluster "outlying" points (outlier detection).

We create suitable random data, i.e. two "heaps" and

some points scattered over the stage, some of which are

on the outside. We cluster this data using the DBSCAN

block.

From this list, we pick out the outliers as non-clustered

"noise" and display the points in red. We combine the

blocks for this purpose.

The example is of course unrealistic in its shortness. But if

we look at parameters of e-mails such as the structure of

the header, number of addressees, type of attachments,

keywords, ..., then we come into the realm of real applica-

tions, such as spam detection.

Two things follow from these considerations:

• On the one hand, the data obviously have to be pro-

cessed heavily in order to be represented in a suitable

high-dimensional space. Procedures must be devel-

oped to assign a vector to the data points - and vice

versa. The actual clustering thus is no longer the focus

at all: it is only a step within the process.

• On the other hand, the number of parameters increases the number of dimensions of the data

space, so that the available data hardly have any neighbors around them. This curse of dimen-

sionality can only be countered if an extremely large amount of data is available. We have another

example of how machine learning is not only about the technology of the computers, but also about

the availability of data.

11 Machine Learning Examples 140

11.11 DNA-Clustering with Levenshtein distance

DNA studies often rely on dissecting the DNA, examining

DNA snippets, and reassembling the DNA if necessary. In

this case, we want to dissect a "soup" with different DNA

snippets into three similar groups, where the distance of

the DNA sequences is measured using the Levenshtein

distance for strings.

DNAs consist of sequences of bases A, C, G and T (see lit-

erature). Since our blocks work with averaging and thus

with numbers, we map such sequences to an n-dimen-

sional space whose coordinates take only the values 1 to

4. So we have to map DNAs to such vectors, process them

and transform back.

We start by generating the DNA snippets. We limit them

all to the length of 20 and form three clusters using the

Levenshtein metric.

After that, the three clusters are extracted and the cluster

number is detached.

Then, the vectors of the clusters can be translated back

into base sequences.

For testing, we form the mean Levenshtein distances

within a cluster and between two clusters.

All right - at least they differ a little.

11 Machine Learning Examples 141

11.12 Character recognition with a Convolutional Neural Network

The immense number of parameters in fully connected perceptron networks and the consequent need for huge

amounts of training data has led to other network variants to drastically reduce this number. One of these is

Convolutional Neural Networks (CNNs), in which the amount of input data to the perceptron network is re-

duced. This type of network is used very successfully in image and speech recognition, for example.

CNNs reduce the amount of data by first applying several kernels in a multi-step process that filters out certain

properties of e.g. an image (edges, oval surfaces, ...) and thus results in several feature maps that usually have

the same size as the original. This first increases the amount of data. Afterwards, a nonlinear activation function

(reLU) is usually applied to the feature maps, followed by a pooling operation that reduces the amount of data

again. Mostly this is max-pooling, where the maximum value is determined from a section of the data. If you do

this with a "window" that is moved over the feature map with a certain step size (stride), then each pooling step

generates a value of the next, reduced feature map.

As an example, let's take a kernel that filters vertical lines: it colors a point white if there is a second pixel next to

the point, otherwise black. In the "folded" image we can then recognize vertical lines of the original as bright spots.

If it does not matter so much where exactly these lines are, then we do not lose too much information in pooling.

A white spot in a feature map after various pooling processes then means: "There was a vertical line somewhere

in this area." Based on such data from several feature maps, it can then be deduced, for example, that a horizontal

line, i.e. a corner, was also located there. If we had searched for "beige" areas as well as "oval" shapes, then the

chance of identifying faces would not be so bad at all.

We now want to build a model for such a CNN that can distinguish the handwritten digits zero and one. For this

we use the Data tools for auxiliary operations, an ImagePad for the actual image and - of course - a Neural-

NetPad for the perceptron network at the end of the chain. Another "normal" sprite named Alberto will control

the operations. To make the model easier to use, we add some buttons as well as a pen to make the interface

clearer. In the screen shot, the image to be analyzed is at the top of the box, while the neural network displays its

result at the bottom. In between, the various intermediate layers are scrolled through and displayed from top to

bottom. As a bonus, the model includes the possibility to draw your own numbers. It should be noted that the

convolution operations "search vertical line" or "search horizontal line" are not well suited for digit recognition,

but they are well comprehensible in the image.

…

the original

convolution

(3 kernels)

pooling pooling
convolution

(3 kernels)

perceptron

network

11 Machine Learning Examples 142

Our CNN is trained with 10 digits each from 64x64 pixels

for the zeros and ones. Then it is supposed to "recognize"

these as well as other handwritten ones. Actually, we

would have to train several kernels of our CNN specifically

for this task. Instead, we take only two known kernels for

the recognition of vertical and horizontal lines, because

by the restriction to two everything can be displayed on

the screen and the results are even halfway interpretable.

(The recognition rate, however, suffers heavily from this!)

Thus, only the perceptron network with four input values

is trained.

In the adjacent image, after two stages of reduction, four

feature maps of 16x16 pixels each are left, each of which

has been run through the operations Convolution →

reLU → Max-Pooling twice: on the far left with the ker-

nel for vertical lines, then with both kernels in different

order, and finally twice with the kernel for horizontal

lines. The numbers below indicate the mean value of the

brightness measured over the entire image. If we apply

this to different digits, then the possibility of measuring

differences between zeros and ones becomes apparent,

despite the very simple procedure.

Let's look at the functionalities of the individual objects:

The ImagePad provides the data of a new costume as a

basis for analysis. To do this, it creates a "first layer" as a

list first layer, which consists of two copies of itself. On

each of these it applies a convolution with two different

kernels. After that a few lines are drawn.

11 Machine Learning Examples 143

After that, each copy must pass through a reLU (rectified

linear unit), which serves as an activation function. In this

case, negative values are simply set to zero.

Finally, a pooling operation is performed to reduce the

amount of data. As an example the pooling operation with

the four sprites of the second level is given.

Alberto, as the controller of the whole thing, has to ask

the ImagePad to change the costume and analyze it af-

terwards. In doing so, he strictly adheres to the specifica-

tions for CNN's.

11 Machine Learning Examples 144

The initialize method only takes care of drawing the lines

on the stage. The other methods work with two layers of

the CNN, first layer and second layer, each containing

the versions of the digits that appear on the stage. So that

they do not interfere with each other, they work with cop-

ies of the ImagePad, not clones.

After the required copies have been created, they are

asked by Alberto to perform the respective CNN opera-

tion. Finally, the clones of the last level, which are now

quite small (4x4 pixels), are displayed in a greatly enlarged

form as "final feature maps". These are used to train the

neural network.

The neural network in the form of a NeuralNetPad is

supposed to generate the largest output at output 1 for

zeros and at output 4 for ones. This is of course completely

arbitrary. The current output value is determined by the

function output with <input>. With its components the

net can be trained, if we succeed in determining the

average values from the last level of second layer. We still

model these suitably with the softmax function.

11 Machine Learning Examples 145

And - did the network learn anything?

Let's write a number:

Had luck!

Tasks:

1. Generate a list of 16 values from the final feature maps.

2. Analyze this list by a neural network of width 16.

3. Test whether the recognition rate increases, especially of

newly written digits. If yes: how do you justify the effect?

4. Also experiment with multilayer neural networks.

11 Machine Learning Examples 146

11.13 Reinforcement learning / Q learning

In reinforcement learning, an agent learns from experience, i.e., it performs actions that are followed by reac-

tions. From these he learns. The reactions must be available for each state of the agent in its environment and

each of its actions at the moment when the agent performs the corresponding action. They are usually called

rewards, and they can be positive or negative. As a whole, they define the goal of the learning process. One way

of reinforcing learning is Q-learning. Check out the literature on reinforcement learning, Bellman's optimality prin-

ciple, Markov chains, and Q-learning.

In our example, we want to let a small robot (as a yellow square) drive around

in an environment (realized as a grid) as an agent, where it should drive to a

charging station (green square) when needed without plowing through the tulip

bed (red squares). We formulate this goal using a reward function (R-function)

that holds a reward for each grid element that the robot gets when it enters

the field. For "normal" fields we define the reward as -1 (because of the

necessary travel distance), for the charging station as +10 (sic!) and for the tulip

bed as -15 (because there is a lot of trouble when entering). If the robot tries

to leave the garden, it gets -10 as a penalty, but stays in the field.

We limit the actions that the robot can perform to steps to the left, right, up and down (stored in that order). For

each of these actions we now have to decide what happens.We choose as strategy the Q-function, which tries to

maximize the robot's profit, i.e. to keep negative rewards small and to collect positive ones. In each case, the

robot chooses the action that promises it maximum profit. Please refer to the literature for more information!

𝑄(𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛) = 𝑟𝑒𝑤𝑎𝑟𝑑(𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛) + 𝛾 ∙ 𝑄(𝑓𝑜𝑙𝑙𝑜𝑤 − 𝑢𝑝 𝑠𝑡𝑎𝑡𝑒, 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑓𝑜𝑙𝑙𝑜𝑤 − 𝑢𝑝 𝑠𝑡𝑎𝑡𝑒)

(𝛾 is an damping factor between 0 and 1)

We realize our project in a 10x10 grid, which we display on

the stage, configured as ImagePad. Next to the R-function

we draw the (positive or negative) maximum value of the

four Q-values in the same color representation. We

transfer the robot to the side of the Q-function.

11 Machine Learning Examples 147

Roby now has to explore his environment, i.e. he walks

around the grid and calculates the optimal Q-values, as far

as this is possible with the previous data. So that this does

not take too long, we let him run through the rows of the

grid in a loop starting at the top right. After one pass, the

Q function looks like this.

You can see that the information about the positive

reward at the top-right has "dissipated" from there in the

lattice, i.e. has spread weakened to the surrounding cells.

In their Q-function is now stored the information in which

direction Roby should move in order to succeed. Also the

surroundings of the tulip bed were marked as extremely

unpleasant, and there, where nothing else is going on, at

least the negative experiences with the edge are recorded.

Let's do another pass!

The positive news has continued to spread slowly

(because of the damping factor), while the rest of the field

cannot get any worse.

We can add a few more of these searches to it.

11 Machine Learning Examples 148

After several passes, nothing changes in this

representation. The Q function is constructed. We can

now test whether Roby can quickly find its way to the

charging station without causing major damage on the

way.

The command

results in the following path:

So Roby has learned to get to his destination quickly

without causing any damage. Hilberto is happy about the

little one!

Notes 149

Notes

1. SciSnap! is not made for small displays, but it runs fine on a larger monitor.

2. The examples in this script are mainly intended to show different ways of using the SciSnap! libraries. It is not

their task to give examples for good teaching, but hopefully they give hints on which level to work.

3. Accordingly, this script largely lacks examples that the learners can use to find and work on their own problem

areas and solutions. If you have any "best-practice" examples, I would be grateful if you could point them out

to me. Perhaps a collection of them could be created.

4. The libraries certainly still contain errors and possibilities for improvement. I would also be grateful for hints

on this.

For the rest, go for it!

References and sources 150

References and sources

[ABELSON] Abelson, Sussman, Sussman: Structure and Interpretation of Computer Programs, MIT Press

[Census] https://archive.ics.uci.edu/ml/datasets/census+income

[DBV] Burger, W., Burge, M.-J-: Digitale Bildverarbeitung – Eine Einführung mit Java und ImageJ, Sprin-

ger 2006

[FITS] de.wikipedia.org/wiki/Flexible_Image_Transport_System

[HOU] Hands-On Universe: handsonuniverse.org/

[HR] https://studylibde.com/doc/2985884/hertzsprung-russell--und-farb-helligkeits

[JSON] Popular Baby Names: https://catalog.data.gov/dataset/most-popular-baby-names-by-sex-and-

mothers-ethnic-group-new-york-city-8c742

[NYcitibike] https://www.citibikenyc.com/system-data

[SchulAstro] www.schul-astronomie.de

[SQL] Modrow, Eckart: Computer Science with Snap!,

http://ddi-mod.uni-goettingen.de/ComputerScienceWithSnap.pdf

[UniGOE] Institut für Astrophysik, Universitaet Goettingen

[Wolfram] Wolfram, Stephen: A new kind of science, Stephen Wolfram LLC, 2002

https://archive.ics.uci.edu/ml/datasets/census+income
https://de.wikipedia.org/wiki/Flexible_Image_Transport_System
https://handsonuniverse.org/
https://studylibde.com/doc/2985884/hertzsprung-russell--und-farb-helligkeits
https://catalog.data.gov/dataset/most-popular-baby-names-by-sex-and-mothers-ethnic-group-new-york-city-8c742
https://catalog.data.gov/dataset/most-popular-baby-names-by-sex-and-mothers-ethnic-group-new-york-city-8c742
https://www.citibikenyc.com/system-data
http://www.schul-astronomie.de/
http://ddi-mod.uni-goettingen.de/ComputerScienceWithSnap.pdf

