
Eckart Modrow

Programming

 with

© Eckart Modrow 2021

emodrow@informatik.uni-goettingen.de

This work is licensed under a Creative Commons attribution - Non-Commercial - Share Alike

4.0 International License. It allows download and redistribution of the complete work with

mention of my name, but no editing or commercial use. In addition to the book, the full

listings of the programs described are available when you send an email to the address

below and pay 20 € to the PayPal account listed below. In addition to the book, the full

listings of the programs described are available when you send an email to the address

below and pay 20 € to the PayPal account listed below. The scripts are developed with

Snap! 6.7.3 Build Your Own Blocks.

The libraries and this script can be loaded at

http://emu-online.de/SciSnap.zip or

http://emu-online.de/ProgrammingWithSciSnap.pdf

The SciSnap!-starter can be found at

https://snap.berkeley.edu/snap/snap.html#present:Username=emodrow&ProjectName=SciSnap!-Starter

SciSnap! itself at

https://snap.berkeley.edu/snap/snap.html#present:Username=emodrow&ProjectName=SciSnap!

Prof. Dr. Modrow, Eckart:

Programming with SciSnap!

© emu-online Scheden 2021

All rights reserved

If this book is helpful for you and you would like to express your appreciation in form of a

donation, you can do so at the following PayPal account:

emodrow@emu-online.de
Purpose: SciSnap!-book

This publication and its parts are protected by copyright. Any use in others than legally permitted cases

requires the prior written consent of the author.

The software and hardware names used in this book as well as the brand names of the respective companies

are generally subject to the protection of goods, trademarks and patents. The product names used are pro-

tected by trademark law for the respective copyright holders and cannot be freely used.

This book expresses views and opinions of the author. No guarantee is given for the correct executability

of the given sample source texts in this book. I assume no liability or legal responsibility for any damages

resulting from the use of the source texts of this book or other incorrect information.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://emu-online.de/SciSnap.zip
http://emu-online.de/ProgrammingWithSciSnap.pdf
https://snap.berkeley.edu/snap/snap.html#present:Username=emodrow&ProjectName=SciSnap!-Starter
https://snap/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Preface 3

Preface

The development of computer tools, especially in the field of programming languages, has

made rapid progress in recent decades. For example, graphical programming languages

have been developed that allow beginners to work on small projects on their own very

quickly without having to worry about syntax quirks, etc. If only a limited time is available

for learning programming, this is a decisive step forward, because the relationship be-

tween the practice of using the programming tool (the programming environment incl.

language) and the content work practically reverses. Accordingly, tools like Scratch 1 from

MIT or Snap! 2 from UCB are used successfully in schools and universities.

So, although a lot has happened with the tools, the content in programming courses looks

surprisingly unchanged. Simple "tasks" are set, which largely serve only to practice the

dealing with algorithmic basic structures and data structures, without going beyond that.

In addition, there are often working techniques that make sense for large projects with

many participants, but which are hardly experienced as helpful by the beginners. An ex-

ample may be the drawing of Nassi-Shneiderman diagrams 3 (structograms), which some-

times have to be made before scripts are developed, e.g. in Scratch – even though graph-

ical languages illustrate the algorithmic structure through their blocks themselves. That is

exactly what they were developed for (among other things). One can imagine the enthusi-

asm of the learners, e.g. if they have to add some numbers and calculate the tax to be

added or as a "funny interlude” to replace all "r" in a text with "l" and thus produce "Chi-

nese" texts. Consequently, the "successes" in programming lessons are also largely un-

changed. Because independent problem solving with the resulting product pride is as rare

as meaningful applications that explain parts of the learners' world, often only those learn-

ers feel addressed who are "interested in computers" anyway. The others, i.e. most of

them, also meet the requirements, but they rightly ask themselves: "Why should I learn

this, what’s for?"

The objection that you can only treat elementary examples with beginners is not to be

dismissed. Although with graphical languages there is much more time for actual problem

solving, the algorithms that are developed independently at this stage of learning are fairly

simple. They usually involve a sequence of commands, often within a loop, that lists some

alternatives in sequence: "If this is the case, then do so." If such scripts are nevertheless to

provide meaningful experiences, then the elementary commands used – a few – must be

"powerful," and it is necessary for the teachers to be imaginative in order to teach "inter-

esting" problems at an elementary level.

This is not a new insight: In the days of the Nassi Shneiderman diagrams, it was a challeng-

ing task to draw an oblique line on a technical device such as a screen or printer. Since

corresponding graphics commands were developed, it has been a trivial problem that is

dealt with one instruction. Just a few years ago, measuring with computers was something

1 https://scratch.mit.edu/
2 https://snap.berkeley.edu/
3 This type of diagram was developed in 1972. For chronological classification: one year later,
the first microprocessor was launched with the Intel 4004. This may speak for the timeless im-
portance of structograms, but it may also indicate that changes could be considered after 50
years.

https://www.google.com/search?rlz=1C1CHBF_deDE715DE715&sxsrf=ALeKk01TjD7l3NXW0kI9vKVxfCQhGdlW5Q:1612545881260&q=Nassi-Shneiderman-Diagrammen&spell=1&sa=X&ved=2ahUKEwiqtL7DodPuAhWOlhQKHSz0BkwQkeECKAB6BAgOEDU

Preface 4

for specialists. Today, almost every school has a set of sensor boards that children work

with. It is actually hard to understand why the new possibilities hardly appear in the field

of algorithmics. A few random numbers are still sorted or words are converted to capital

letters instead of "digging" into sets of data using similarly simple scripts or searching

books or images for characteristic structures. To be precise: if characteristic features such

as means, standard deviations, ... grouped by characteristics such as the place of residence,

gender or occupation of the parents can be determined in a data set with one command,

there is enough space in the rest of the algorithm e.g. searching for correlations or graphing

the relationships, also with one or a few commands. Above all, however, these possibilities

can raise current and obviously important questions, the answers of which concern the

learners themselves.

1. A goal of SciSnap! is therefore to provide appropriate libraries in various fields such

as image processing, diagramming, mathematics, data analysis and databases, graphs

or neural networks.

A (unfortunately) current example: economic, geographical, social

or content relationships can be represented by graphs. If appropri-

ate commands are available, then the creation and representation

of such a (here: random) graph in SciSnap! requires only three

commands: "configure a sprite, create n nodes, and then n randomly

selected edges" 4. If we consider the links as contacts between per-

sons, then the question is how many intermediate contacts can

spread infections during pandemic times. Thus, we compute the

shortest paths between the nodes: "For each node: compute the

shortest paths to all other nodes and enter them in a list". For these

results, we calculate the mean values per node in a simple loop, and

from this we calculate the overall mean value. 5 Algorithmically, it's

a typical beginner's problem: "run through a simple loop". In terms

of content, we have found ways to discuss a current social problem,

"small worlds" 6, social networks, friendships or customer-supplier

relationships. Teaching has become more relevant.

No one will need all of SciSnap!'s rather extensive libraries at the

same time. If you assign even one library to the existing, already

quite full palettes, an "overflow" will happen. So it's another goal of

SciSnap! to keep order and overview in the command palettes of

Snap!. For this purpose is the ability of SciSnap! to create, delete

or hide palettes (in Snap!: categories). The required libraries are

sorted into these palettes.

2. Therefore, another goal of SciSnap! is to expand the Snap!-palettes, and if necessary,

to reduce them, thus creating Snap! versions configured for different purposes.

4 Pseudocode: configure GraphPad, add 100 vertices, add 100 edges
5 Pseudocode: means=list, for i=1 to 100(add mean of row i of distances to means),
mean=mean of means
6 https://en.wikipedia.org/wiki/Small-world_experiment

Preface 5

I you change Snap!, then you disconnect yourself from the current development of this

fantastic tool. I have therefore refrained from making direct changes to the Snap! code.

Instead, I have divided SciSnap! into two parts: in the first, the SciSnap!-Starter, a con-

figuration is created. The commands to generate it are used as a normal Snap! project. 7

From this configuration the actual SciSnap! is started. Use the Snap! cloud, and both are

fast.

3. A goal of SciSnap! is to work with the current Snap! version - as long as there are no

fundamental changes.

It's not the goal of SciSnap! to present ready-made applications. Rather, it provides pow-

erful commands that can be used to build applications. An example of this are the

"Sketchpads": costumes for arbitrary sprites or the stage, on which sketches can be created

quickly. Function graphs, images, charts, or histograms can be created with a few com-

mands, and scales are added—and deleted when it gets too crowded. This makes it possi-

ble, for example, to illustrate mathematical relationships, such as showing the effect of

operators on complex numbers. It is hoped that these examples will encourage learners to

create even other, perhaps better, applications that use algorithmic methods in different

fields.

4. SciSnap! should be usable both as a tool and as a development environment.

Snap! is not only a fantastic development tool, but it is based on a fantastic concept. As a

graphical re-implementation of MIT’s Scheme 8 language, based on the "CS Bible" "Struc-

ture and Interpretation of Computer Programs" 9 by Abelson et.al., it is conceptually far

superior to many of the most common programming languages. Although it's not very fast,

Snap! is running fast enough to be used fluidly in educational settings. Its built-in visuali-

zation capabilities make it ideal for simulations. The prototypical inheritance used makes

basic computer concepts directly tangible. Nevertheless, it is largely underrated, probably

because of the similarity of its interface to Scratch. I hope, therefore, that making libraries

available that are intended more for projects in high school or in the first semesters of

college will have a positive effect on its distribution to these age groups. Let’s see...

5. SciSnap! is intended for higher grades of school as well as for undergraduate study.

This script contains a description of the possibilities of SciSnap! as well as some examples

explaining the intended use. The libraries are based on the experience with “Machine

learning with Arthur&Ina 10” and the Snap!-fork SQL-Snap! 11. They were supplemented

by numerous mathematical operators, SQL, sketchpads, neural networks and graphs. A

detailed description of Snap! with a lot of examples can be found at "Computer Science

7 You can include starter projects in the favorites bar and run them with one click, e.g. as
https://snap.berkeley.edu/snap/snap.html#present:Username=emodrow&Project-
Name=SciSnap!-Starter&editMode
8 https://en.wikipedia.org/wiki/MIT/GNU_Scheme
9 https://mitpress.mit.edu/sites/default/files/sicp/full-text/book/book.html
10 as well as other materials on http://emu-online.de
11 http://snapextensions.uni-goettingen.de/

http://emu-online.de/

Preface 6

with Snap!" 12 – and of course, in the Snap!-manual13. The presented concepts have been

and will be used in classes and in beginner lectures at the university.

Oh, and of course there are also two little helpers that will assist in your work with

SciSnap!. Depending on the application, they two will take turns. Alberto 14 will take care

of the more scientific applications, Hilberto 15 of mathematical and data-oriented ones. If

one is active, the other can rest a bit. Both claim to be distant relatives of Alonzo, the

Snap! -Mascot. Whether that’s true? One does not know!

I would like to thank Jens Mönig and especially Rick Hessman for his contributions to the

PlotPad, their support and the numerous discussions and suggestions.

I hope you enjoy working with SciSnap!.

Göttingen, on 2021.7.1

12 http://ddi-mod.uni-goettingen.de/InformatikMitSnap.pdf
13 https://snap.berkeley.edu/snap/help/SnapManual.pdf
14 he works in astrophysics with Rick Hessman
15 https://de.wikipedia.org/wiki/David_Hilbert

Content 7

Content

Preface ……….….…… 3

Content ……..…………………………………….…………………………………………….………………………… 7

1 SciSnap!-Starter ………………………………………………………..………………………….…..……… 9

 1.1 Create start configurations …….……………………………………………………….…..……… 9

 1.2 New blocks in the standard palettes of Snap! …………………….……….….…..……… 11

2 The structure of the SciSnap!-Sprites……..……..………….……….……………….….……… 13

3 The SciSnap!-Libraries……………….……………………………………….……..….…..…… 15

 3.1 The Mathematics-Libraries (SciSnap!FullMathLibrary.xml) ..…………..…………… 15

 3.1.1 Complex Numbers (SciSnap!ComplexNumbersLibrary.xml) ...…..………. 15

 3.1.2 The MathPad (SciSnap!MathPadLibrary.xml) ...…..……………………………. 16

 3.1.2 Linear Algebra (SciSnap!LinearAlgebraLibrary.xml) ……….……...…………. 17

 3.1.3 Statistics (SciSnap!StatisticsLibrary.xml) ..…………...….……………….………. 19

 3.1.4 Sets (SciSnap!PredicateSetsLibrary.xml) ...……………….……………….………. 20

 3.1.5 Numerical Methods (SciSnap!NumericMathLibrary.xml) ………..……..…. 22

 3.2 The Data-Library (SciSnap!DataLibrary.xml) ………….………………………...….…….. 23

 3.3 The SQL-Library (SciSnap!SQL-Library.xml) ……..………………………………...….……. 28

 3.4 The ImagePad-Library (SciSnap!ImagePadLibrary.xml) ………..…………...….……. 31

 3.5 The PlotPad-Library (SciSnap!PlotPadLibrary.xml) …………..……..………...….……. 33

 3.6 The GraphPad-Library (SciSnap!GraphPadLibrary.xml) ……..….…………..….……. 35

 3.7 The NeuralNetPad-Library (SciSnap!NNPadLibrary.xml) ……………….…..….……. 37

4 Data Import and Export……..……………….…..………….…………………………….….……… 38

5 Examples and Tasks .………………………………….…..………….…………………………….….……… 42

 5.1 Representation of complex numbers ………….…………………………....…….….……… 42

 5.2 Affine transformation of a triangle in R2 ……..……………….....………..…….….……… 43

 5.3 Rotation of a pyramid in R3 ……………………..……………………...………..…….….……… 44

 5.4 Graph of normal distribution ..…………………..………………………….…..………….……. 45

 5.5 Cartesian product of three sets ...………………………………………….…..………….……. 46

 5.6 Representation of a set of points and the regression line ……..…..………….……. 47

 5.7 Interpolation polynomial through n points ………….……………….…..………….……. 48

 5.8 Approximation of a tangent by secants …………....……………………...………….……. 50

 5.9 Finite series ……………………………………………..………………………………………………... 52

 5.10 Application of the Taylor series to the mathematical pendulum ………………... 54

 5.11 Fourier expansion for a square wave signal with numerical integration ……... 57

 5.12 NY Citibike Tripdata 1: Correlations …..…….………………………………………………... 61

 5.13 Income data from the US Census Income Dataset ………….……………………….…. 62

 5.14 NY Citibike Tripdatea 2: data processing ..…………………………………………………... 64

 5.15 Under- and Overfitting ………..……………………………………………….…..………….……. 65

 5.16 NY Citibike Tripdata 3: World Map Library …..……………………….…..………….……. 68

 5.17 Star spectra ……….………………………………..……………………………..…………….….……. 72

 5.18 Classification in the HR diagram according to the kNN method …….……………. 75

 5.19 Data import and export: CSV import ..……………………………………………………..…. 38

Inhalt 8

 5.20 Data import and export: JSON import ….……………………………..…………………..…. 39

 5.21 Data import and export: writing CSV and text data to a file ………………………… 41

 5.22 Drawing a function and its derivatives …………….………………………………....…..…. 77

 5.23 Data plot of random data scattering around a function graph …………....…..…. 78

 5.24 Histogram of random values …..……………………….………………………….…………..…. 79

 5.25 Covid-19 data analysis …………………………………………………………………………...….. 80

 5.26 Shadow lengths in the lunar crater Tycho ……………………………………………...….. 82

 5.27 Plot of mixed data ………………..…..…………………………………………………………...….. 83

 5.28 Simple SQL query ……..……………….…………………………………………………………...….. 84

 5.29 More complex SQL query ………….…………………………………………………………...….. 84

 5.30 Data import and export: SQL import ……………………………………………………...….. 39

 5.31 Dealing with the SQL library ……..…………………………………………………………...….. 85

 5.32 Random graphic .……………………...…………………………………………………………...….. 86

 5.33 False color image of a lunar crater ….……………………………………………………...….. 87

 5.34 Slice through the image of the lunar crater Tycho .………………………………...….. 87

 5.35 Data import and export: false color image of Saturn …...………………………...….. 38

 5.36 Data import and export: data import with the mouse …………………………...….. 40

 5.37 Plot of image data as histogram ………………..…………………………………………...….. 88

 5.38 Simulation of a planetary transit in front of a sun ..………………………………...….. 89

 5.39 Affine transformation of an image .………………………………………………………...….. 90

 5.40 Kernel applications for edge detection in images ………..………………………...….. 91

 5.41 Mean distances in a random graph (Small Worlds) ……………..………………...….. 92

 5.42 Mean distances in a scalefree graph (Small Worlds) ..………………….………...….. 92

 5.43 Histogram "edges per vertex" in a random graph ………………..………………...….. 93

 5.44 Histogram "edges per vertex" in a scalefree graph ……………..………………...….. 93

 5.45 Breadth and depth search in the family tree ..……………………..………………...….. 94

 5.46 A simple perceptron as a graph …………………………………………..………………...….. 96

 5.47 A simple learning perceptron as a graph ……………………………..………………...….. 98

 5.48 Training of a neural network ……………………………………………….………………...….. 100

 5.49 Traffic sign recognition with a neural network …………………....………………...….. 101

 5.50 Character recognition with a Convolutional Neural Network ...……………...….. 106

 5.51 k-means-Clustering ..……………………………………………………………………………...….. 112

 5.52 DNA-Relatedness und Levenshtein-Distance ..…………………………………….....….. 115

Notes …......…………….……………………………………………..………..…………………………….….……… 116

List of examples ….………….……………………………………..………..…………………………….….……… 117

References and sources ………......…………………………..………..…………………………….….……… 119

1 SciSnap!-Starter 9

1 SciSnap!-Starter

1.1 Create start configurations16

As long as Snap! itself does not yet work with changeable palette configurations, you have

to deal with self-made solutions - if you want to have something like that17. Since I also

want to work with the current Snap! version, more serious interventions in the actual code

are not allowed. Snap! looks at which palette the new blocks are to be sorted into when

loading a project. If this palette is missing, the blocks are ignored. We therefore have to

work in two steps to create SciSnap! applications:

1. New palettes and some global variables SciSnap! works with

are created. Not needed palettes can be hidden. If you want,

you can load the needed libraries into the corresponding pal-

ettes right after. You should add a "green flag block" to which

the start commands will be attached. This starter configura-

tion is saved as a Snap! project, e.g. in the cloud.

2. You should include a link to "your" SciSnap! starter project in

the favorites bar in a form that executes the "green flag com-

mands" immediately: e.g. as

http://snap.berkeley.edu/snap/snap.html

#present:Username=emodrow&ProjectName=

SciSnap!-starter&editMode

When you add the adjacent JavaScript block to your script, the

normal "Open Project" dialog immediately follows.

3. Work is done in this configuration and the current project is

again stored in the cloud.

4. If you want to continue working on the current project later, then load the Starter pro-

ject and with it the current Snap! version, e.g. with the link in the favorites bar. After

its execution, the process continues as usual. If both files are in the cloud, then the

process is simple and fast.

5. If you want to start a new project with "New" from the File menu, the palettes are kept,

but the SciSnap! blocks have to be reloaded.

16 Due to the current problems with JavaScript, JavaScript must first be enabled in the tools
menu.
17 To be clear, using the import library block, you can also load the SciSnap! libraries into any
other palette. So you don't need to create new palettes!

http://snap.berkeley.edu/snap/snap.html#present:Username=emodrow&ProjectName= SciSnap!-starter&editMode
http://snap.berkeley.edu/snap/snap.html#present:Username=emodrow&ProjectName= SciSnap!-starter&editMode
http://snap.berkeley.edu/snap/snap.html#present:Username=emodrow&ProjectName= SciSnap!-starter&editMode

1 SciSnap!-Starter 10

We will go through this with an example: The goal is to work with the SQL blocks and ad-

ditionally insert a palette for your own blocks. The palettes for sound and the pen are not

to be used.

Step 1: We load Snap! and then the general

SciSnap! starter file. (We could also import

the SciSnap!GlobalBlocks library instead).

We get the adjacent screen. There we enable

JavaScript if necessary.

Step 2: We specify which palettes are to be hidden

(here: Sound and Pen) and which are to be

created with which names and colors (here:

Sql and MyBlocks). In this case, the SQL li-

brary should also be loaded into the "Sql"

palette at once. This project is first saved un-

der the name "SciSnap!-SQLStarter".

Step 3: We save the following link as a favorite:

(without spaces and line feeds):

 http://snap.berkeley.edu/snap/snap.html

#present:Username=emodrow&Project-

Name=SciSnap!-SQLStarter&editMode

 After that it will be executed.

As a result we get a SQL working environment.

SciSnap!-Logo

changed

palettes

SQL blocks

in the SQL

palette

http://snap.berkeley.edu/snap/snap.html

1 SciSnap!-Starter 11

1.2 New blocks in the standard palettes of Snap!

The additional blocks of the Looks palette are there because they have to be assigned to

a standard Snap! palette to be loaded. The Looks palette is where they fit best and are

the least disruptive. There are the following blocks:

Creates the SciSnap! logo and displays it, generates

the desired palettes. Enlarges the stage to 800x600

pixels.

Reads a property.

Allows you to modify or create a property.

Creates three global SciSnap! variables "SciSnap!Prop-

erties", "SciSnap!Data" and "SciSnap!Messages". Sets

some properties.

Inserts a palette with the named name and RGB colors

mentioned.

Hides, shows, or deletes a palette. Snap's standard pal-

ettes! will not be deleted.

Imports a library of any name into the specified pal-

ette. The library is selected with the mouse.

Changes the name of the current sprite.

Creates a message window in the center of the screen.

Outputs an error, if possible, via the current sprite and

enters it into SciSnap!Messages.

Provides a copy of the current costume.

Provides the costume of a sprite, e.g. for pooling oper-

ations.

In addition, the following blocks for handling sprites can be found in the Control palette:

Creates a duplicate of the specified sprite with the

specified name.

Creates a permanent clone of the specified sprite with

the specified name.

Imports a locally stored sprite.

1 SciSnap!-Starter 12

The Operators palette contains additional mathematical operators and string functions:

 Returns a random number between 0 and 1.

 Returns 𝜋.

 Returns the Euler number e.

Returns the specified number rounded to

the specified number of decimal places.

 Returns n!

Returns the binomial coefficient.

Some type checks.

 Returns a partial string of strings.

Deletes all or the first string(s) in a string.

 Returns a string in capital letters.

 Returns a string in lowercase.

Writes a string to a text file in the browser's

download folder.

 Returns the position of a substring.

Replaces all or the first string(s) in a string.

Reads a column heading from a table, e.g. to

chart label.

Conversions from datetime to the specified

values.

In addition, the following variables can be found in the variable palette

and in the sensing palette a block for standarizised time:

Other variables are created depending on the use of the libraries when

configuring the sprites.

2 The structure of the SciSnap!-Sprites 13

2 The structure of the SciSnap!-Sprites

The second part of SciSnap! consists of independent libraries, which on the one hand can

be used generally in Snap! scripts (Math, Data, SQL), and on the other hand work with

specially configured sprites (MathPad, NeuralNetPad, GraphPad, PlotPad, Im-

agePad). The reason for this are the properties, which are very different for a Neuronal-

NetPad than for a PlotPad. In addition, such "special sprites" must have their own data

areas in which e.g. image data can be stored. A global data area can be found in the

SciSnap!Data, with which the blocks of the Data library work in the default case. For the

creation of diagrams, on the other hand, it makes more sense for a PlotPad to have its

own data area that is independent of that of the ImagePad to which the diagrams refer.

Each sprite and the stage can be configured as

"special sprites", e.g. as ImagePad. The local

variables myProperties and myData are cre-

ated and some useful presets are made for the

properties. The properties are usually grouped

into groups, e.g. costume properties (costume-

Properties) or the way to draw lines (lineProp-

erties). All blocks that require a specific config-

uration initially query the typeOfConfiguration

property of the sprite they are to work with. If

this is not correct, an error message is dis-

played. The groups of properties can be

changed with the corresponding blocks.

The structure of the SciSnap! sprites is thus based on the idea of documented data sets

consisting of two parts: the metadata describing the structure and content context of the

data (e.g. number format, image dimensions, recording device, recording date, ...) and the

associated pure data segments. Metadata usually consist of dictionaries - names with as-

signed values (e.g., "Recording date: 2018/12/24"). Examples of this structure are FITS

files [FITS], which are standard in astrophysics but are also used in the Vatican Library, or

JPEG images from cell phones. Here, too, there are metadata (image size, degree of com-

pression, date taken, ...), without which image generation would not be possible.

We adapt this structure by assigning two local variables to a SciSnap! sprite, each con-

taining the data (myData) and the data description (myProperties). These variables can

be filled by importing data from different sources (SQL query, text file, CVS file, JSON file,

FITS file, direct assignment, ...), whereby the properties myProperties are to be adapted

to the respective data. On the other hand, this can also be done "by hand". With the help

of these properties, data can be converted into graphical representations (graph, data plot,

histogram, image, ...), whereby either myData or another suitable table is selected as

source.

2 The structure of the SciSnap!-Sprites 14

It is important that the image generation does not change the original data. If, for example,

an image of Jupiter is used to determine the distances of its moons, then these must at

least be visible in the image. For this purpose, a false color image can be generated after

setting some parameters. In this image Jupiter itself will appear rather unstructured. If, on

the other hand, one wants to examine the "eye" of the planet more closely, then the

parameters must be chosen quite differently, so that the moons are barely visible. All these

changes must be done in the pixels of the current costume of the Snap! sprite without

affecting the image data itself.

Because tables can be represented very nicely in Snap!, this form of representation is not

implemented additionally. Instead, the data type table is implemented with many of the

common operations in the field of data science (table operations, correlation calculation,

affine transformations, solving linear systems of equations, ...), which can handle suffi-

ciently fast even larger amounts of data.

Since SciSnap! (currently) contains about 250 new blocks, they have been grouped ac-

cording to their functionality and distributed to different libraries and sprite configura-

tions: several Math libraries for different areas of mathematics (60 blocks), a data library

(30 blocks) for handling the actual data, an ImagePad for image processing (19 blocks), a

PlotPad for graphical representations (24 blocks), a NeuralNetPad for perceptron net-

works, an SQL library for database queries (27 blocks) and a GraphPad for graph theory

applications. In addition there are the already mentioned blocks in the standard palettes

of Snap! All blocks are global and contain the target of the operation (thisSprite, theStage

or the name of another sprite). Object-oriented calls are therefore largely unnecessary.

 The configured sprites have the following structure:

Most blocks get their parameters (image size, value ranges, colors, ...) from the dictionary

myProperties. The preset properties allow to use blocks for creating graphics, diagrams,

... without too many parameters. If the values do not fit, the properties are changed either

individually or in groups.

configurated sprite

Using the libraries,

they import data from

• Image-files

• Text-files

• SQL-queries

• JSON-files

• CSV-files

• …

Libraries

The libraries provide

blocks for graphical

representation of data,

editing tables, solving

systems of equations,

applying statistical op-

erations,

3 The SciSnap!-Libraries 15

3 The SciSnap!-Libraries

In the following, the libraries are presented in tabular form. More extensive examples,

which mostly use several libraries, follow afterwards.

The SciSnap! libraries - like all block libraries of Snap! - have been assigned to palettes

and saved. For loading, it is a prerequisite that these palettes are available. If a library is to

be loaded into another palette, then the block can be

used for this. With its help, the libraries can also be used in a "normal", i.e. unmodified

Snap! version.

3.1 The Mathematics-Libraries
 (SciSnap!FullMathLibrary.xml)

3.1.1 Complex Numbers (SciSnap!ComplexNumbersLibrary.xml)

If you are planning more extensive operations with complex numbers, you should consider

using the Scheme library of Snap! (Bignums-library). SciSnap! is intended more for com-

plex arithmetic as well as illustration of operations. In SciSnap! complex numbers are rep-

resented as 3-element lists, where the first entry denotes the format of the number: either

the "Cartesian" style 𝑧 = 𝑎 + 𝑏 ∙ 𝑖 or the polar form 𝑧 = 𝑟 ∙ 𝑒𝑖𝜑. There are input blocks for

these two forms:

Returns a complex number in Cartesian form.

Returns a complex number in polar form.

If necessary, these forms of representation can be converted into each other, and arith-

metic operations can be performed.

Returns a complex number in Cartesian form.

Returns a complex number in polar form.

Example of format conversion.

The components of a complex number can be accessed -

regardless of their format.

And, of course, you can calculate with them.

Example of multiplication:

3 The SciSnap!-Libraries 16

3.1.2 The MathPad (SciSnap!MathPadLibrary.xml)

Configures a sprite as a MathPad and draws a

3-dimensional coordinate system centered in

the middle.

 Test for MathPad configuration.

 Sets a MathPad property.

 Reads a MathPad property.

Sets the costume properties of a MathPad to

the specified values.

Sets the line properties of a MathPad to the

specified values. If "onlyPoints" is set, only the

endpoints are drawn.

 Draws the coordinate system on a MathPad.

Draws a vector, complex number, line or object

described by a list of vectors.

Performs an affine transformation in the plane

for a list of points, e.g. an object, described by

mapping three points to three others.

3 The SciSnap!-Libraries 17

3.1.3 Linear Algebra (SciSnap!LinearAlgebraLibrary.xml)

SciSnap! knows vectors and matrices and the common operations with them. Both are

represented as lists or lists of lists, and both can be in transposed form. They are created

with the following blocks:

Returns a vector of any di-

mension with predefined

values.

Returns a vector of arbi-

trary dimension with ran-

dom values from the spec-

ified range.

Returns the matrix from

the specified vectors.

Returns a matrix of arbi-

trary dimension with ran-

dom values from the spec-

ified range.

Matrices and vectors can

be transposed.

Between scalars, vectors

and matrices the respec-

tive allowed operations

can be performed. Since

vectors can be processed

with the standard arithme-

tic operators of Snap!

there are no separate

blocks for them.

Calculates the coefficients

of the polynomial through

n points.

And for such polynomials

one can calculate function

values.

Applies a matrix to a list of

points (look at the exam-

ple).

3 The SciSnap!-Libraries 18

Calculates the solution to a system of

linear equations.

The block returns several data about

the passed matrix: the diagonalized

matrix, if any, its rank, whether col-

umn swaps have occurred, and the

current order of the columns.

If only the diagonalized matrix is of in-

terest, then we consider the first ele-

ment of the result.

Beispiele:

3 The SciSnap!-Libraries 19

3.1.3 Statistics (SciSnap!StatisticsLibrary.xml)

For statistical applications SciSnap! contains a number of distributions. Correlation calcu-

lation, variances etc. are implemented in the data library, binomial coefficients and facto-

rials can be found in the operators palette.

Probabilities of the binomial distri-

bution

𝑏(𝑁, 𝑝, 𝑘) = (
𝑁

𝑘
) ∙ 𝑝𝑘 ∙ (1 − 𝑝)𝑁−𝑘

Calculates the cumulative distribu-

tion function of the binomial distri-

bution.

Probabilities of the hypergeometric

distribution

ℎ(𝑁, 𝑀, 𝑛, 𝑘) =
(𝑀

𝑘
) ∙ (𝑁−𝑀

𝑛−𝑘
)

(𝑁
𝑛

)

Calculates the cumulative distribu-

tion function of the hypergeometric

distribution.

Probabilities of the Poisson distri-

bution

𝑝(𝜃, 𝑘) =
𝜃𝑘 ∙ 𝑒−𝜃

𝑘!

Calculates the cumulative distribu-

tion function of the Poisson distri-

bution.

Probabilities of the Pareto distribu-

tion

𝑝𝑎𝑟𝑒𝑡𝑜(𝑥𝑚𝑖𝑛, 𝑘, 𝑥) =
𝑘 ∙ 𝑥𝑚𝑖𝑛

𝑘

𝑥𝑘+1
;

𝑥 ≥ 𝑥𝑚𝑖𝑛; 0 𝑠𝑜𝑛𝑠𝑡

Probabilities of the normal distribu-

tion

𝑛(𝑥, 𝜇, 𝜎) =
𝑒

−
(𝑥−𝜇)2

2𝜎2

√2𝜋𝜎2
;

3 The SciSnap!-Libraries 20

3.1.4 Sets (SciSnap!PredicateSetsLibrary.xml)

Sets are implemented in SciSnap! as three-element lists. There are two versions of this.

In the first one, predicates (x<5) are used to enter ranges next to an enumeration of ele-

ments. In the second, this is done using intervals (3<x<7). The libraries differ only in the

definition of a set and an additional block for interval compression. The first element of a

set contains the type ("set"), the second either a predicate or it is empty or a list of inter-

vals. The third element contains a list of elements not yet covered by the predicate or in-

tervals. Compound predicates are again lists, which contain the Boolean operator ("NOT",

"OR", "AND") in the first element and afterwards one or two predicates, which again can

be compound. Sets of this type can be generated either by enumeration or by specifying a

predicate.

For further work with sets, the known set operations are available. If predicates are used,

then only numbers and strings are useful as elements. The following operations do not

refer to bounded sets in this case. Predicates or interval memberships can be identified

with "evaluate with".

Returns the result of the predicate ap-

plied to the passed element or an in-

terval list.

Returns "true" if the element is an el-

ement of the set, otherwise "false".

 Returns the intersection of two sets.

 Returns the union of two sets.

Represents the elements of a set "a bit

more readable".

Generates the corresponding list of el-

ements from a text. Lists are brack-

eted "square" in the text, sets are

bracketed "curly".

The following operations must be performed with finite sets because all elements are pro-

cessed. For this reason there is an upper bound for set elements, which is set either in the

SciSnap!Properties or by the block in the set library.

Sets the limit up to which predicates are checked, if ap-

plicable.

 dito

 Returns the difference of two sets.

3 The SciSnap!-Libraries 21

Returns "true" if the first set is subset of the second, oth-

erwise "false".

Returns "true" if the sets contain the same elements,

otherwise "false".

 Returns the Cartesian product of two sets.

Returns the first n elements of a set as a list.

 Merges a list of intervals.

Because on the one hand the predicates of the sets are so important, and on the other

hand the procedures are also needed in Boolean algebra, some more blocks were added

to the set library.

Implication, returns "true" if the conclusion is formally

true, otherwise "false".

Equivalence, returns "true" if the inputs are formally

equivalent, otherwise "false".

 Conversion of switch values into truth values.

 Conversion of truth values into switch values.

Examples:

3 The SciSnap!-Libraries 22

3.1.5 Numerical Methods (SciSnap!NumericMathLibrary.xml)

The library contains some blocks for dealing with sequences, series, secants, integrals and

roots, as well as the calculation of derivatives at a given point.

Calculation of a sequence element. The term

must be entered with (gray) ring ("ringified").

Example: the 17th element of the sequence
1

√𝑛
 .

Returns the first n members of a sequence as a

list.

Example: The first 10 elements of the sequence
1

√𝑛
 .

Calculates the sum of a finite series. The term

must be entered with (gray) ring ("ringified").

Example: The sum of the first 1000 elements of

the series ∑
1

𝑖2
1000
𝑖=1 .

Sequence of secant slopes in a point. The se-

quence can also be specified explicitly in the

form of a list. The term must be entered with

(gray) ring ("ringified").

Example: 10 secant slopes near the point with

x=2 of the function 𝑓(𝑥) = 𝑥3 − 3𝑥, calculated

with the sequence
1

𝑛2.

Numerical calculation of an integral using the

trapezoidal method. The term must be entered

with (gray) ring ("ringified").

Example: Calculation of the integral

F=∫ cos 2𝜋𝑥 𝑑𝑥
𝜋

0

Root calculation according to Newton's method.

The term must be entered with (gray) ring ("rin-

gified").

Example: Calculation of the root of

𝑓(𝑥) = 𝑥3 − 3𝑥, start at x=1.

Numerical calculation of the derivative in a

point. The term must be entered with (gray) ring

("ringified").

Example: Calculation of the derivative of

𝑓(𝑥) = 𝑥3 − 3𝑥 at x=0.

3 Die SciSnap!-Bibliotheken 23

3.2 The Data-Library (SciSnap!DataLibrary.xml)

The data library of SciSnap! serves on the one hand for the direct manipulation also of

larger data sets, on the other hand for the evaluation of data, e.g. for the computation of

statistical values such as the variance or correlation. Because number structures like

vectors and matrices are implemented in the math libraries, the data library is largely

limited to tables as an additional structure. Their rows and columns can be identified either

by their numbers or by the identifiers of the first column or row.

Columns can additionally be named with capital letters (A..Z). If a

number is required as identifier (i.e. not the column or row

number), then a double cross (#) must be placed in front of the

number as identifier, e.g. #123.

The following examples refer to a table that contains "party names"

as the first column and then "election results" in the years indi-

cated.

Returns an empty table (as a start structure for further

table operations).

Returns a table of the specified size without contents.

Returns a table of the specified size without contents,

but with column headers.

Returns a copy of a list or table. Since Snap! assigns lists

as references, you can use this block to avoid unin-

tended changes to the original.

The block imports tables, image data or SQL data into

the global variable SciSnap!Data, which the other

blocks of the library work with by default.

Example: Import a table using the file selection dialog.

 Starts the file selection dialog.

Writes a table to a file in the browser's download area

with the specified name.

3 Die SciSnap!-Bibliotheken 24

Returns a transposed table or list as a result, i.e. one in

which rows and columns have been swapped.

The following blocks are used for direct manipulation of tables.

Returns a row or column of the specified table.

Example: The first column of the example table

without the heading.

Returns the specified row range of the specified

columns.

Example: Results of the three specified parties

from 2010 and 2020.

Adds a row, a column or column headers to the

specified table. Missing elements are added with

empty content, "overhanging" are ignored.

Deletes a row or column from the specified table.

Example: Deletes the column for the year 2010

from the sample table.

Returns the specified table element.

Example: Result of the party KKA in 2011.

 Sets the value in a table at the specified position.

3 Die SciSnap!-Bibliotheken 25

The following blocks are much more powerful. The examples refer again to the example

table.

Returns selected rows of a table that satisfy

the specified criterion.

Example: All election results with parties be-

ginning with "A".

Returns the selected property of a vector,

i.e. a row or column consisting only of num-

bers.

Returns the minimum, maximum, count,

sum or average of the first column of data

specified, grouped by the second. The head-

ings can be included - or not.

Examples:

The mean values for 2010, grouped by party.

The mean values of the party AAB, grouped

by years.

 Returns a table without duplicate rows or a

vector without duplicates.

Example: We insert the first row of the table

again at the end ...

...and then delete the duplicates again.

Returns a table sorted by the specified col-

umn in ascending or descending order.

3 Die SciSnap!-Bibliotheken 26

Example: The election results sorted by the

year 2011.

Returns ranges, covariance and correlation

for two table columns.

Example: Correlation for the years 2010 and

2011.

Normalization of a vector by dividing it by

the mean, maximum, number, sum, median

of its values or by the softmax function.

Example: Results of the party KKA, "normal-

ized" by the mean.

Returns a table compressed by the factor n

by averaging. Texts cannot be compressed in

this way, of course.

Returns n points scattering around a straight

line, given by slope and y-axis intercept, in a

range bounded by "range". Serves mostly

for test purposes.

Example:

5 points scattering around 𝑓(𝑥) = 𝑥 − 2.

Returns n points that scatter around an arbi-

trary function, given by its "ringified" opera-

tors, in a range bounded by "range". Mostly

used for testing purposes.

Example:

5 points scattering around 𝑓(𝑥) = 𝑥2 − 4.

Returns the slope and y-intercept of the re-

gression line through the specified data.

3 Die SciSnap!-Bibliotheken 27

Example: Regression line through 10 ran-

dom points scattering around a straight line.

Returns a table that has been compressed

by max- or mean-pooling with step size n.

The dimensions of the new table are passed

before the result. Well applicable to image

data.

Example: A matrix of 100x100 random num-

bers is compressed with step size 25.

k-nearest neighbor (kNN) method in two di-

mensions for machine learning.

Example: HR graph

Returns the result of a convolution applied

either to a table or to image data.

Example: Edge detection, CNN

Returns a section of a table, matrix, list or

image data given by the two points "left-up"

and "right-down".

Returns the row or column number of a ta-

ble with the specified label or vice versa.

Returns n random points from the specified

range.

Clustering of n-dimensional data using the

k-means method. The Euclidean distance is

taken as the metric. cluster numbers are ap-

pended to the data.

 Clustering with any metric.

 Returns the Levenshtein-distance.

3 Die SciSnap!-Bibliotheken 28

3.3 Die SQL-Library (SciSnap!SQLLibrary.xml)

The SQL library contains most of the commands required for SQL queries (select). Other

SQL statements can be entered directly into the exec SQL-command block. However,

in this case you must have the appropriate access rights. The library works with two global

variables SQLData and SQLProperties, which prevent the data stored in them from con-

flicting with that of other sprites. The variables are created automatically during configu-

ration.

Similar to the Math and Data blocks, the SQL blocks do not work with a specific sprite or

stage. However, each call first checks whether SciSnap! has been successfully configured

for SQL access. If this is not the case, an error message is displayed - for reporter blocks

as the result of the function call, for command blocks as the output of the calling sprite as

well as in the SciSnap! collection box for error messages SciSnap!Messages.

Configures SciSnap! for SQL access. For this, the

global variables SQLData and SQLProperties are

created and the initial properties are set. The sprite

that executes the command will take the costume

SQLDisconnected if it exists.

 Returns "true" if the configuration is correct, otherwise "false".

Connects to a database server whose address is in the

script. This should be re-set, e.g. as localhost, if the

default server is not used. If the connection attempt is

successful, the executing sprite will take the costume

SQLConnected if it is present.

Sets one of the properties in SQLProperties to the

specified value.

Returns one oft the properties in SQLProperties.

3 Die SciSnap!-Bibliotheken 29

 Imports a table into the SQLData data area.

Example: Import of a query result.

Provides a list of currently available databases.

 Selects one of the existing databases.

Returns a list of tables in the selected database.

Returns a list of attributes of the specified table.

Block for generating simple SQL queries that can be ex-

ecuted by the exec SQL-command block.

Block for generating complex SQL queries that can be

executed by the exec SQL-command block.

Block for executing SQL statements to a database. The

statements can be generated by select blocks or en-

tered directly.

 Predicates to perform comparisons.

 Predicates to perform logical operations.

 Predicate for checking a string pattern.

 Predicate to check if an element is included in items.

Aggregate functions.

3 Die SciSnap!-Bibliotheken 30

The following SciSnap! libraries work with locally configured special sprites. These are

conceptually derived from sketchpads, so they are used for making sketches, experiment-

ing, trying out the effect of commands, etc. If the pad is too full, then a new "page" is taken

from it and work continues.

Each sprite and the stage can serve as a special sprite. For this purpose they are config-

ured accordingly by creating two local variables myData and myProperties and filling

them with initial values. The commands that refer to a special sprite all contain the target

of the operation - i.e. a sprite or the stage. Before executing the instructions, it is checked

in each case whether the target has been configured correctly. After that, the local data

and properties of the target are used. On the one hand, this procedure largely eliminates

object-oriented calls, which greatly lengthen the instruction blocks if data must be passed,

and on the other hand, it keeps the data local to the sprites that the operations concern.

For example, if data is measured in an image and plotted in a graph, the ImagePad and

the PlotPad can work independently with their own data and properties. The initial set-

tings make it possible to work with halfway reasonable default settings. If the result shows

that other settings would make more sense, then the default settings are changed - but

only then. This way of working makes it possible to get by with relatively few parameters

for the individual blocks. The properties are largely grouped together, for example the

properties of the lines to be drawn. This means that they can be transferred or read "in

one go" and their number is kept within limits.

3 Die SciSnap!-Bibliotheken 31

3.4 The ImagePad-Library (SciSnap!ImagePadLibrary.xml)

ImagePads are used to display image data, i.e. to generate images. Measurements can

be made in these images using the mouse - for example, a section can be created through

the image. In addition, some of the usual operations for drawing lines, rectangles, circles

and texts are available. The coordinate system on ImagePads is the usual one for images:

the origin is in the upper left corner and the y-axis is directed downwards.

Configures a sprite or the stage as ImagePad.

The name of "anotherSprite" must be specified

if required. The command must be executed

once before working with a sprite as ImagePad.

The target of the call takes a rectangular cos-

tume with the specified dimensions and colors.

Returns "true" if the configuration is correct,

otherwise "false".

Returns one of the properties in myProperties.

Sets one of the properties in myProperties to

the specified value.

Sets the costume properties of the specified tar-

get.

Sets the line properties of the specified target.

elementary drawing operations

Draws a list of "points" as circles or squares.

Attention: JS-coordinates are used!

3 Die SciSnap!-Bibliotheken 32

Imports image data.

Creates an image from the image data on a

ImagePad.

Returns the result of an affine transfor-

mation of a costume described by specifying

three original points and three image points.

 Starts the file selection dialog.

Sets a pixel of the costume to the specified

value.

 Returns the value of a pixel of the costume.

Sets an image point in the data area to the

specified value.

Returns the value of an image point from the

data area.

Returns image data using the mouse: indi-

vidual image values, image coordinates, sec-

tions through the image, end points of a line

or data of a circle, and brightness values

from a range.

Returns the total brightness around a pixel

in the specified radius.

Draws a list of "point" as "balls". Attention:

JS-coordinates are used!

3 Die SciSnap!-Bibliotheken 33

3.5 The PlotPad-Library (SciSnap!PlotPadLibrary.xml)

PlotPads are used to display graphs, histograms, etc. The current Sci-Snap!Plot-

PadLibrary was heavily designed by Rick Hessman, especially the PrettyPrinting and

the line styles are from him. Many thanks for that!

Configures a sprite or the stage as a PlotPad. The

name of "anotherSprite" must be specified if re-

quired. The command must be executed once be-

fore working with a sprite as a PlotPad. The target

of the call takes a rectangular costume with the

specified dimensions and colors.

Returns "true" if the configuration is correct, oth-

erwise "false".

Sets one of the properties in myProperties to the

specified value.

Returns one of the properties in myProperties.

Sets the costume properties of the specified tar-

get.

Sets the line properties of the specified target.

Sets the marker (datapoint) properties of the spec-

ified target.

Sets the scale properties of the specified target.

Sets the label properties of the specified target.

3 Die SciSnap!-Bibliotheken 34

Calculates the distances of the coordinate axes

from the edges.

Sets the ranges of the axes of the coordinate sys-

tem.

Sets the number ranges so that "pretty" labels are

on the axes.

Returns values for "pretty" labels of the axes.

Redetermines the ranges, calculated from the

data.

 Returns the ranges of a two-dimensional table.

Adds a function graph to the PlotPad, given as a

list of polynomial coefficients or as a "ringified"

term.

Adds a data plot for a two-dimensional data table

to the PlotPad.

Adds a data plot to the PlotPad for a two-dimen-

sional table containing texts in the first column and

numerical values in the second.

Adds a histogram to the PlotPad.

 Adds axes and labels to the PlotPad.

Deletes the previous plots.

Returns the conversion of a numerical value into

coordinates of the plotpad or the coordinate sys-

tem used.

Converts the mouse position into costume or

graph coordinates.

Simple plot program for data.

3 Die SciSnap!-Bibliotheken 35

3 Die SciSnap!-Bibliotheken 36

3.6 The GraphPad-Library (SciSnap!GraphPadLibrary.xml)

Graphs are one of the most powerful models in computer science. With their help, complex

systems can be studied, especially the effect of the interconnection of numerous similar

subsystems. However, the algorithms required for this, such as breadth-first search or

routing, are themselves non-trivial, so it seems reasonable to provide them as basic com-

mands in order to concentrate the work on the modeling itself. This is exactly the purpose

of the SciSnap!GraphPadLibrary.

Configures a sprite or the stage as a

GraphPad. The name of "anotherSprite"

must be specified if required. The command

must be executed once before working with a

sprite as GraphPad. The target of the call

takes a rectangular costume with the speci-

fied dimensions and colors.

Returns "true" if the configuration is correct,

otherwise "false".

Sets one of the properties in myProperties to

the specified value.

Returns one of the properties in myProper-

ties.

Sets the costume properties of the specified

target.

Sets the vertex (node) properties of the spec-

ified target.

Sets the edge properties of the specified tar-

get.

Adds n vertices (nodes) to the graph at ran-

dom positions.

Adds one vertex (node) to the graph at the

specified position.

Moves a vertex (node) to the specified posi-

tion.

 Adds n random edges to the graph.

Adds an edge to the graph between the

named vertices (nodes).

Draws the graph. Colors connected vertices

(nodes) in the same color.

Changes the weight of an edge, if possible.

3 Die SciSnap!-Bibliotheken 37

Returns the weight of an edge, if possible.

 Changes the content of a vertex (node).

 Returns the content of a vertex (node).

 Asks for a new edge weight.

 Asks for a new vertex (node) content.

 Asks for a new start vertex size.

 Deletes a vertex (node) of the graph.

Deletes an edge of the graph.

 Marks a vertex (node).

 Deletes the marking of a vertex (node).

 Deletes all markers in the graph.

Depth first search for a content starting from

the vertex with the specified number.

Breadth first search for a content starting

from the vertex with the specified number.

Spatial distance between two vertices on the

sprite.

Shortest path between two vertices in the

graph.

List of all shortest paths from a vertex to all

connected vertices in the graph.

Number of a vertex at the given position on

the sprite.

Converts stage coordinates to graph (JS-style)

coordinates.

Returns the number of the vertex with the

specified content.

3 Die SciSnap!-Bibliotheken 38

3.7 The NeuralNetPad-Library (SciSnap!NNPadLibrary.xml)

The basic principles of neural networks are simple and obvious, but the learning proce-

dures of the systems with their discrete gradient descent and the associated partial deriv-

atives are not so easy to understand for those who are distant from mathematics. In par-

ticular, it is not so easy to understand what a neural network has actually learned. The

SciSnap!NNPadLibrary is intended to enable the handling of neural networks on an in-

termediate level between very small and really large networks. It illustrates the values of

the edges by coloring, where positive values are shown in green and negative values in red

colors. Small values tend to be black. The library facilitates the creation and training of fully

connected perceptron nets.

Configures a sprite or the stage as NNPad.

The name of "anotherSprite" must be speci-

fied if required. The command must be exe-

cuted once before working with a sprite as

NNPad. The target of the call takes a rectan-

gular costume with the specified dimensions

and colors.

Returns "true" if the configuration is correct,

otherwise "false".

Sets one of the properties in myProperties to

the specified value.

Returns one of the properties in myProper-

ties.

Sets the costume properties of the specified

target.

Sets the layer properties of the specified tar-

get.

Inserts random weights for an NN of the spec-

ified width and depth.

Returns the output of the nth layer of the NN

for the specified input vector.

Displays the status of the network for the

specified input vector in color-coded form.

Trains the NN for the given input vector to

achieve the given output vector.

4 Data Import and Export 39

4 Data Import and Export

Snap! can import a number of data formats directly. This can be done by "dropping"

appropriate files onto the Snap! window or importing them by right-clicking on a var-

iable watcher. Both work well with text, CSV and JSON files. Other text file formats

like FITS can also be imported this way, asking if you are serious. Exporting works the

same way. If you want to do the same programmatically, use the reporter block read

file with filepicker. A file manager window appears where you select the file as usual.

After that the data will be imported.

The essential task remains to assign this data to the SciSnap!Data

variable and set the corresponding properties in SciSnap!Proper-

ties. This is done by the following block, which imports data from

outside into the SciSnap!Data area. This can be image data, table

data or the data of the current costume. This is stored as a table of

RGB values.

Example: False color image

Using an ImagePad, an image (source: [NASA]) is saved and

redisplayed with false colors.

Example: CSV Import

Almost 600000 records from a CSV file are read in about 10 seconds. The properties are

set.

4 Data Import and Export 40

Example: SQL Import

If we have access to an SQL server, we can also import data from it. In our case, we use the

SciSnap!SQLLibrary to import the results of a query into the SQLData variable. In doing

so, the data is converted into table form and its relevant properties such as number of

columns and rows, ... are reset in the SQLProproperties.

Example: JSON Import

 Again, the easiest way is to simply "drop" a JSON file into the Snap! window. But it can

also be done automatically. First of all, we look for interesting JSON data and of course

choose the statistics of baby names in New York City for this - what else. The

appropriate block for this is again import <table data> from <read file with filepicker>

to SciSnap!Data. The result is a list with two columns and two rows, the

metadata and the actual data. Because we are interested in these we replace

the original data with the element (2|2) of the table. Of course, we looked at

the individual elements in table form beforehand to check what we loaded

there in the first place. From the many columns we copy the three interesting

ones into a new table, add column headers and import the result back into

SciSnap!Data.

The result: 19419 baby names - Who would have thought it!

4 Data Import and Export 41

Example: Data import with the mouse

In many cases, especially with images, it is advantageous to read in data using the mouse.

For this purpose, ImagePads have a block that can be used to determine image values,

image coordinates, the data on a section through the image, the start and end points of a

line, the center and radius of a circle, and the summed brightness values together with

their number in a circle. As an example, the height of ancient columns is to be measured.

For this purpose, the costume image of the ImagePad with the columns is imported and

then measured with the mouse (yellow line).

As a second example for measuring with the mouse we want to measure the total

brightness inside a circle around a star photo (source: [HOU]).

We get the total brightness and the number of

measured pixels.

4 Data Import and Export 42

 The export of data can again be done directly from a variable watcher.

For scripts there are two new blocks write <table> to CSV file

<filename> and write string <string> to file <filename>. The

results end up in the browser's download folder, as usual in Snap!

The two blocks allow to automate the data exchange with

spreadsheet programs or text files, for example to save the results of

data processing.

5 Examples and Tasks 43

5 Examples and Tasks

5.1 Representation of complex numbers

The operations with complex numbers can be easily illustrated in SciSnap! by using the

MathPad: a sprite configuration that allows to quickly represent, for example, complex

numbers as arrows. Since the complex plane has two dimensions, we need to change the

default (3 dimensions), then we represent two complex numbers and their sum in different

colors.

Create the MathSprite sprite as Math-

Pad in the specified size and color. Then

set dimension etc.

 Draw the first number in green,

moving the starting point.

Draw the second number

in blue. Then move the

starting point back to the

origin.

Draw the sum in red from

the origin.

Since this is a mathematical example,

Hilberto's contribution must of course

be adequately acknowledged by his

co-representation.

5 Examples and Tasks 44

5.2 Affine transformation of a triangle in R2

We define a triangle by its location vectors. Then

we define three points in the plane and three

points to map them to:

Then we create a two-dimensional MathPad,

change the maximum value of the axes and draw

the triangle in red. To its position vectors we apply

the affine transformation and draw the result in

blue. Since coordinate transformations are rather

something for physics, Alberto presents the result.

5 Examples and Tasks 45

5.3 Rotation of a pyramid in R3

First, of course, we want to draw a

pyramid. We define the base and the

top by location vectors:

We have them drawn by first drawing the base area,

then lines from its corners to the top.

For rotations around the axes we need the three

rotation matrices Dx, Dy and Dz. For a rotation

around the x-axis by 90° we can apply the matrix

directly to the base surface. Then we let draw the

side lines to the rotated point by multiplying the

rotation matrix with the transposed location vectors

of the points.

 So in total:

5 Examples and Tasks 46

5.4 Graph of normal distribution

 Using the PlotPad, the graph of the normal distribution is drawn.

5 Examples and Tasks 47

5.5 Cartesian product of three sets

First of all, we create three sets with names, possible ages and occupations:

After that we generate four values from the "allowed" age range:

From these sets we can now form the Cartesian product of names, ages, and occupations:

And thus nothing stands in the way of a transition to the topic of "relational databases",

for example.

5 Examples and Tasks 48

5.6 Representation of a set of points and the regression

line

Using the SciSnap!DataLibrary, we create 100

random points scattering around a straight line with

slope m=0.5 and intercept b=0. We plot the obtained

points in a diagram.

In addition, the regression line is also drawn.

5 Examples and Tasks 49

5.7 Interpolation polynomial through n points

We want to generate a data set of 100 points that scatter around a given function. We

display these points in a diagram. We then select three points by clicking on the

corresponding locations with the mouse and placing a red marker there. After that we

draw an interpolation polynomial in red through these three points. Since this is a

"mathematical" project, Hilberto is responsible for it.

First of all the random points:

After that we configure the current sprite to

the PlotPad and draw the point set.

Now we select the three points and plot

them in the diagram right away.

And last we add the interpolation

polynomial.

5 Examples and Tasks 50

Tasks:

1. a: Generate "point clouds" scattering around other polynomials.

 b: As in the example, specify some points in these clouds through which an interpola-

tion polynomial is to be drawn.

 c: Let draw these polynomials.

2. a: Experiment with the number of points you select. Do the results get better when

you select more points?

 b: Generate "point clouds" that scatter around non-holistic function graphs (trigono-

metric, ...). Can you also describe these by interpolation polynomials?

 c: Formulate a rule for when and how to use interpolation polynomials in a meaningful

way - and why just so.

5 Examples and Tasks 51

5.8 Approximation of a tangent by secants

We want to show that a sequence of secant slopes

converges against the slope of the tangent line at a

point. To do this, we configure a sprite called

PlotPad as PlotPad and draw the graph of a

function, here: 𝑦 = 0,3 ∙ 𝑥3 − 3 ∙ 𝑥 .

We want to draw a sequence of

secants near the right minimum,

which approach the tangent. Of

course we need a point (x0|y0) near

the minimum to do this:

We may as well draw it in.

As sequence to approach the point

we choose 𝑎𝑛 =
2

𝑛
 , and we let gen-

erate the first 20 elements.

The rest is just as simple: we have the secant

slopes calculated ...

… und die Sekanten in Farbabstufungen zeichnen.

5 Examples and Tasks 52

 The whole thing - with result - once again in one piece:

Tasks:

1. In addition, have the "correct" tangent drawn in the diagram.

2. Choose as sequence for the secant calculation other sequences approaching the

point (x0|y0) from the other or both sides.

3. a: Similarly, illustrate the calculation of roots using the Newton method.

 b: Select some cases where the procedure works well or hardly or not at all.

5 Examples and Tasks 53

5.9 Finite series

We want to approximate some of the common mathematical constants and functions via

series expansions - and also try out how long you actually have to calculate to get good

results.

Let's start with . In a compendium of formulas 18 or on

Wikipedia 19 we can find a formula for calculating 

the Leibniz-series:
π

4
= ∑

(−1)𝑖

(2∙𝑖+1)

𝑛

𝑖=0

We can implement them directly in SciSnap!.

But when is the result actually "good"?

 To answer this question we create a table.

With 10 million summands you

have to wait a bit for the result!

Actually, it is strange that one must calculate so long

for so little improved accuracy. You might do some-

thing like that in rainy Hanover in 1673 to avoid having

to go for a walk - but now? We just try the BIGNUM

library from Snap! for exact calculations with Scheme

numbers. Then the calculation takes even longer and

we get amazing results that don't look like .

After a long search, we discover the fraction bar in the middle, although it is no longer

visible in the second line. Scheme numbers are exact fractions and not floating point

numbers.

18 Ask your grandpa what it is.
19 https://en.wikipedia.org/wiki/Leibniz_formula_for_π

5 Examples and Tasks 54

We therefore have the exact Scheme numbers

converted to inexact floating point representation

before we enter them into the table.

Despite the effort, the results are almost the same as

before. Thus, the poor convergence behavior of the se-

ries is not due to the inaccuracies of the standard arith-

metic of a programming language (here: JavaScript),

but to its structure. Good to know!

Tasks:

1. Find out the meaning of the terms "scheme numbers" and "floating point numbers".

2. Look for other series expansions for , which converge better than the Leibniz series.

3. Find and implement a series expansion for Euler's number e.

4. Inform yourself about reasons to calculate with the accuracy of Scheme numbers in-

stead of that for floating point numbers.

5. Write scripts for the series expansion of trigonometric functions, e.g. sin(x), cos(x), ...

Note that the angle must be specified in radians.

5 Beispiele 55

5.10 Application of the Taylor series to the mathemati-

cal pendulum
A very illustrative application of series expansions is the simulation

of a mathematical pendulum, i.e. a string pendulum. Usually, one

works there with the approximation that for small angles the value

of the sine (in radians) corresponds approximately to the value of its

argument - i.e. one breaks off the series expansion of the sine func-

tion after the first summand. Let's take a closer look: We get the

force 𝐹 accelerating the ball on the circular path as 𝐹 = −𝐺 ∙

sin 𝜑 = −𝑚 ∙ 𝑔 ∙ sin 𝜑. According to the basic equation of mechan-

ics, this Force is equal to the inertial force 𝑚 ∙ 𝑠̈ = 𝑚 ∙ 𝑎. If we use

the relation for the angle in radians 𝜑 =
𝑠

𝐿
, we get

𝜑̈ = −
𝑔

𝐿
∙ sin 𝜑

For small angles the approximate sin 𝜑 ≈ 𝜑 is valid and thus

𝜑̈ ≈ −
𝑔

𝐿
∙ 𝜑

Let's see if this works! First of all we simulate the "real" pendulum movement by taking

the acceleration from the current position, from it we determine the change of the velocity

and from it again the new position. We put the data into a list plotdata1. Some further

quantities like the length of the pendulum and the initial displacement are given by

variables in the slider view. First of all, we plot the initial situation: A pen draws required

lines, and the pendulum hangs on the ceiling of the lab, of course.

Now we start: We measure the current deflection and

the time and write both values into the list of

measured values. Then we calculate the current

acceleration, which changes the angular velocity, and

from that the new angle. After that we let draw the

new situation. And this again and again.





G=m.g

F=-m.g.sin 

L

5 Beispiele 56

To this arrangement we add another sprite as PlotPad:

the Plotter. It is fast enough to display the current data

in real time. Therefore we insert the block for it into

the simulation loop of the pendulum.

Alberto is visibly thrilled that

this is working out so well!

But the real goal was to see how good the approximation is. For this purpose we introduce

a second data list plotdata2 as well as an "approximated" angle 𝜑𝐴𝑝𝑝𝑟𝑜𝑥 and the

corresponding angular velocity. The "real" angle 𝜑 and the approximated one start with

the same value. Then we measure the "real" deflection

of the pendulum and calculate the approximated

value. We draw both in the diagram - the calculated

value in red.

You can see that the approxi-

mation is quite good at the

beginning, but diverges with

the real-time values as time

goes on.

5 Beispiele 57

This can be done better!

Instead of the linear approximation, we choose the Taylor series of the sine, of which we

use n sums as approximation. We specify n as slider variable.

sin 𝜑 = ∑(−1)𝑖 ∙
𝜑2𝑖+1

(2𝑖 + 1)!
=

𝑛

𝑖=0

𝜑 −
𝜑3

3!
+

𝜑5

5!
− ⋯

We can copy this directly into SciSnap!:

Together with the conversion of angles into radians we obtain for the angular acceleration:

Already with an extension of the approximation by one series element (i.e. −
𝜑3

3!
) the devi-

ation from the measured values are no longer visible in the diagram.

Tasks:

1. Let the simulation run longer and notice when - depending on the number of sum-

mands of the Taylor series - deviations appear.

2. Do the same for different start angles of the pendulum.

5 Examples and Tasks 58

5.10 Fourier expansion for a square wave signal with

numerical integration
One way to Fourier represent a 2 -periodic function 𝑓(𝑥) is

𝑓(𝑥) ≅ 𝑎0 + ∑(𝑎𝑘 ∙ cos(𝑘 ∙ 𝑥) + 𝑏𝑘 ∙ sin(𝑘 ∙ 𝑥))

∞

𝑘=1

 𝑎0 =
1

2𝜋
∙ ∫ 𝑓(𝑥) ∙ 𝑑𝑥

2𝜋

0

𝑎𝑘 =
1

𝜋
∙ ∫ 𝑓(𝑥) ∙ cos(𝑘 ∙ 𝑥) ∙ 𝑑𝑥

2𝜋

0

 𝑏𝑘 =
1

𝜋
∙ ∫ 𝑓(𝑥) ∙ sin(𝑘 ∙ 𝑥) ∙ 𝑑𝑥

2𝜋

0

; 𝑘 = 1,2,3, …

We want to determine the coefficients for the series expansion of a rectangular signal

purely numerically and test how the length of the series expansion affects the accuracy of

the results.

First of all we need a square wave signal with period 2. A function that returns this

would be e.g. 𝑓(𝑥) = {
−1 𝑖𝑓 (𝑥 𝑚𝑜𝑑 2𝜋 − 𝜋) > 0

 1 𝑖𝑓 (𝑥 𝑚𝑜𝑑 2𝜋 − 𝜋) < 0
 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Of course, let's look at this in the diagram before we think it is a square wave signal:

 True so.

Now, for each value of x, we need to calculate the first n coefficients of

the Fourier series. For this we use the block for numerical integration.

So, let's try it for 𝑎0 =
1

2𝜋
∙ ∫ 𝑓(𝑥) ∙ 𝑑𝑥

2𝜋

0
. Since we already have the "rin-

gified term" for the function f, we can simply write

off:

For the other coefficients we have to complete the

trigonometric terms and obtain for

 ak: and bk:

5 Examples and Tasks 59

These terms now only have to be summed up:

This gives us the following script in total:

We have two "screws" in it,

which we can turn: on the one

hand the number n of the

terms of the Fourier series can

be changed, on the other hand

the number i of the intervals in

the numerical integration. The

effects of changes can be easily

judged if we randomly draw

values from the range of values

of x and plot the result

together with the function f.

Deviations then show up

immediately.

n summands i intervals result comment

50 100

Actually quite

good except for

"slips" that are at

the jump points

of the function.

5 Examples and Tasks 60

50 50

That should be

clear.

50 200

Better, but only

slightly better

than with 100

summands.

25 200

Worse, but only

marginally worse

than with 50 sum-

mands.

10 100

Perhaps quite a

good compromise

between accuracy

and computation

time require-

ments.

5 75

In many cases,

this is probably

still acceptable.

5 Examples and Tasks 61

You can see that the accuracy required depends on the task. For example, are slips at the

jump points acceptable or is it precisely there that precision is important? It can also be

seen that very different effects can be achieved with the same effort.

Tasks:

1. a: Give function terms for a triangular signal, a signal made of peaks, Have the

function graphs drawn.

 b: Calculate the Fourier series for the signals.

 c: Experiment as shown to find a reasonable tradeoff between accuracy and compu-

tation time requirements.

2. a: Create tables with the data for a triangle signal, a signal from peaks, ... using the

function terms.

 b: Output the signals through the speaker.

 c: Generate the corresponding tables using Fourier series of different quality and lis-

ten to them as sounds as well. Do you perceive any differences?

3. Find out about applications of Fourier series.

5 Examples and Tasks 62

5.11 NY CitiBike Tripdata 1: Correlations

As an example of how to use the blocks, let's "dig" a bit into a larger, freely available da-

taset: the New York CitiBike rental data.

(NY citibike tripdata: https://www.citibikenyc. com/system-data)

We load the data, extract it, and get CSV data of

quite a size, which we load "in one swoop" into

the SciSnap! data area, the SciSnap!Data

variable. We get almost 600,000 records.

Their column headers we split off from the

table.

These data can be analyzed in very different ways. We

will do this later, but for now we will limit ourselves to

the question of whether there is a correlation between

gender and loan duration. Obviously, we only need

columns 1 and 15 for this, so we delete the other

columns.

First of all, let's look at the mean values for the different

genders (0: unknown, 1 male, 2: female):

 That's what we thought!

And what about the

correlation? First, we

throw out the data with

the "unknown" gender.

There are still about 340,000 data records left. For these,

we calculate the correlation coefficient between column 1

and 2 - and get the result shown opposite.

And what does this number want to tell us now??? We

don't know - but we can read up and learn!

5 Examples and Tasks 63

5.12 Income data from the US Census Income Dataset

(Quelle: [Census])

We want to dig into some data and therefore download the Census

Income Dataset from the net.20 The corresponding CSV file can be

loaded from the file directory in SciSnap!Data and displayed immediately. It contains

32562 records. Double-clicking or right-clicking on it and selecting "open in dialog..." shows

all columns.

Which correlations could be found in this?

Our data blocks don't help that much at first, because they mostly process numeric data.

If we want to use them, we have to scale the columns in such a way that numerical con-

tents result. In the simplest case, we replace texts with numerical values - and should think

carefully about what consequences this might have with regard to their interpretation.

Let's start with the last column: Income

values are given for only two ranges: less

than or greater than $50,000. We assign

values 1 and 2 to these ranges. (Or 0 and 1,

or -1 and +1, or 0 and 100, or Would

these changes have consequences?) To avoid

changing the original data, we create a

variable income and store the changed

values there by copying column 15 (income)

without the first value (the heading) into this

variable and then using the map...over...

block to change the contents. Anyway, that's

what we try to do. Unfortunately, when we

look at the result again as a table, we only get

the unchanged column 13.

What's going on? We look at the first element of income

and check if it is a string. It is, but it is longer than we

thought:

20 This is one of the training datasets for machine learning.

5 Examples and Tasks 64

So we have to throw out the leading blanks

before. This works now: our variable income now

only contains the values 1 and 2, as we can quickly

check by looking at it.

What does this income now depend on?

Maybe from age? We combine column 1 (age) and

our modified income column into a new table called

testdata.

We describe the relationship between age

and income by the correlation coefficient.

The calculation is simple:

And what does that mean?

Tasks:

1. Find out the meaning of the correlation coefficient and interpretation of the obtained

value. What does the value "0.2340..." mean?

2. In this case, does the correlation coefficient depend on the type of numerical scaling of

the data (1 and 2, -1 and 1, ...)? Check.

3. Determine other correlation coefficients, e.g. between education and income, country

of origin and income, marital status and income, country of origin and occupation, ...

4. Find out if and when the scaling of non-numerical data can have an influence on the

result.

5 Examples and Tasks 65

5.13 New York Citibike Tripdata 2: data processing

Let's take a look at who actually rides a bike in New York. To do this, we

download the rental data from NY Citibike for a month onto the

computer, which are the almost 600,000 data records already

mentioned. Let's take a closer look.

Of course, we still need to find out from the source what the data actually means - that is,

look at the metadata. For the gender we learn that 0: unknown, 1: male and 2: female. For

the columns "tripduration" and "gender" we determine some data:

 The average duration of borrowing, in terms of gender:

That's what we thought!

Let's see if they are lazier on Broadway:

 I see. Probably Central Park is even worse!

All right. All prejudices do not have to be true.

Tasks:

1. But maybe only the women at Central Park ride their bikes more. Check it out.

2. There is not only one rental station at Central Park. Determine appropriate averages

for the entire area.

3. Are there actually rental data for other parts of the city? Do a search and compare the

results with Manhattan.

4. Determine the average borrowing times per weekday, in total and for individual sta-

tions. Are there differences? Why?

5. Above, the mean borrowing time was calculated in relation to gender. You could also

do it the other way around. Would that be complete nonsense or are there questions

for which that would make sense?

5 Examples and Tasks 66

5.14 Under- and Overfitting

Machine learning uses training data to adjust the parameters of a function so that other

values are predicted well - if everything works well. So, you build a prediction tool, a kind

of "telescope" for data.

One might think that the more customizable parameters a function contains, the better it

is. But this is not the case. On the one hand, (1.) more parameters require more training

data and training runs, i.e. more learning time; on the other hand, (2.) an "unsuitable"

number of parameters can also prevent "good" solutions. For both we give an example.

Re 1: In the neural network for traffic sign recognition (example 48), we achieve very good

results with one layer. If we increase the number of layers and leave the number of training

runs the same, then the recognition rate decreases drastically.

Re 2: If the training data is well reproduced by the function, it does not mean that this is

also true for other data. It depends very much on the kind of function that is generated. As

application we choose the example polynomial interpolation.

The task is: With the help of training data, the coefficients of a polynomial are adjusted so

that OTHER data are predicted as well as possible.

To do this, we need to generate data that will

be used to calculate an interpolation polyno-

mial. This time the task is done by Hilberto. He

generates data that scatter around the parab-

ola 0,5 ∗ 𝑥2 − 3.

We configure a second sprite next to Hilberto

named PlotPad as PlotPad and plot the data

on it.

As a "workhorse" we choose the PlotPad. If

necessary, we import the required functional-

ity from other libraries.

5 Examples and Tasks 67

 This is already enough to show the data.

 We first try the interpolation with a regression line.

This actually looks quite nice, but it doesn't properly fit on

the sides.

So, we try it with a polynomial interpolation.

First of all, we choose three random pairs from the

training data, determine the interpolation

polynomial and draw it. Because we want to

experiment further, we generalize the solution to a

polynomial through n points. The results depend on

which points were caught. Here is a bad and a quite

good result.

5 Examples and Tasks 68

Now we're getting brave! Instead of three points, we

choose 5. After all, we want to do a good job! That works

halfway in the middle, and then - oops!

Maybe we just have to use more points. Let's try 10. The

polynomials run through more points, but they "take off"

at the edges.

Well, then with all the points!

You can see that as the degree of the polynomial in-

creases, there is more training data directly on the graph,

but that in between, the wild oscillations of the polyno-

mial only "predict" nonsense values.

The quality of what we learn therefore depends very much

on how we deal with deviations. We have to decide which

inaccuracies in detail are tolerable so that the forecast as

a whole becomes reliable. If the degree of the polynomial

is too small, we speak of underfitting, if it is too high, of

overfitting.

Tasks:

1. Discuss different ways of defining a "good" degree of the interpolation polynomial (i.e.,

its highest power).

2. Formulate your results so precisely that they can be realized as scripts.

3. Test the scripts on different data sets.

5 Examples and Tasks 69

5.15 New York Citibike Tripdata 3: World Map Library

Even in New York, bicycling has become "hip" and the borrowing data can be loaded as

CSV files. We do this as in the previous examples with this dataset. Since we also want to

create graphics, we configure a sprite as PlotPad.

Let's see where you can rent bicycles. For the

overview we extract the rental stations from the

total list, e.g. by grouping them by the name of

the starting station (column 5) and selecting only

this column as the result. We still get 337

stations. Since geographical longitude and

latitude of the borrowing stations are given, it

makes sense to use the World Map Library of

Snap!. We write a small block for this, which

displays the surroundings of a borrowing station

as a map.

After that, we look for the data of a station ...

... and thus set up the list of coordinates of the stations 21.

With this data we can send Hilberto to the individual po-

sitions and ask him to leave circles there with the stamp

block, for example.

21 This will take some time!

5 Examples and Tasks 70

At least in midtown Manhattan, I don't think we have

to worry about finding a borrowing station!

 Let's take a closer look at the rental station Broadway

- corner 41 Street (No. 465). To do this, we pull all

records from the total list that start or end at this

station. That's 5054 operations this month. Times are

entered in this list along with the date. We can throw

this out (split with " ") and reduce it to the hour (split

with ":"). We then have a numerical scale with the unit

"hour". Now we can see what is going on at the station

in the individual hours of the day.

And we can represent this

graphically as usual.

5 Examples and Tasks 71

Of course, we can combine that into one block,

still leaving open the decision of whether we

want to record borrowings, returns, or both.

 Lending:

 Returns:

A few streets away, it looks very similar. Is

this a general pattern?

Well, at Central Park people get up later and the tourists are not there yet. But the muse-

ums always close at the same time.

5 Examples and Tasks 72

So, what can our programs learn from this data?

• For example, we could predict from the usual departures and arrivals as well as the

actual stock whether enough bikes will be returned to a station in time or whether it

would be better to transport some there.

• We could determine from mean path lengths which batteries are being used for eBikes.

• We could determine whether women or men are more likely to borrow the bikes at a

particular time of day and then make sure the supply is right. We could do the same for

the age of the borrowers.

• We could determine the borrowing data per bike and predict when repairs will be due.

We could also do this as a function of the location of the stations, for example.

• We could try to generalize distributions from some stations so that predictions for oth-

ers can be derived from them. So, when museums close at Central Park, the program

can "learn" from the old data in which districts bikes are likely to be dropped off and

when, and warn if there are not enough free slots there.

etc.

Tasks:

1. Break down the stations' activities according to arrivals and departures.

2. Write a forecasting function that warns when there is a threat of a bike shortage at a

station in the next few hours.

3. For specific stations, graphically represent the connections to the most selected drop-

off stations on the map by direct lines. Choose line thickness according to the number

of borrows and colors according to the station. Do clusters form?

4. With the help of correlations, determine whether there are correlations in the borrow-

ing behavior (e.g. with regard to the times of day, the location, ...) with the gender, the

age, the status of the borrowers. You may need to replace the data with numerical data

beforehand - similar to the times. Discuss possible consequences.

5. For a small section of Midtown (where everything is nice and rectangular), determine

the coordinates of the street corners. Then develop a router that shows the shortest

path to the nearest Citibike station.

6. Borrowing rates depending on the time of day show some

differences in different areas of Manhattan. Examine simi-

larities and differences systematically and try to explain the

results.

5 Examples and Tasks 73

5.16 Star spectra [UniGOE]

Stars shine in different colors because they have different

temperatures. In addition, the spectra differ in their

absorption lines. We want to investigate this a little more

closely.

We get some star spectra (source: [UniGOE]) and save

them as a text file. We read such a file and split it into a

list data. The first line contains the star name after the

column labels. We isolate it and save it as starname.

We now know what the star is called. If you search for it

on the Internet, you will find a lot of information about it.

So that we can repeat the loading process with other

data, we encapsulate it in its own block. After its

execution, the actual star data are available as a lightly

prepared table. Unpleasant about it is the strongly

different magnitude of the data in the two columns. We

therefore normalize the second column using the mean

value and store the result as normalizedData.

The normalized data can be used to quickly create a plot

on a PlotPad.

5 Examples and Tasks 74

One can see well the sloping course with some striking

absorption lines. But do we need all spectral data at all

for this insight? Maybe it is enough to reduce the amount

of data by averaging. We introduce a compression factor

compressionRate and complete the script before the

diagram generation.

The factor 5 does not change

much. So let's keep trying.

It can be seen that the temperature-dependent course of the spectrum is hardly

changed. Only the absorption lines are lost.

Thus, the type of the spectrum should be described by an

interpolation polynomial of e.g. 4th degree.

5 Examples and Tasks 75

So, this works very well! If we log the polynomial parameters at the same time during the

examination, then we can easily distinguish the star types on the basis of the parameter

ranges.

If you feed a neural network with the polynomial coefficients, it quickly learns to roughly

assign a diagram to a star type. The program can "learn" on the basis of the old data which

parameter intervals belong to which star classes. If one enters the data of a new star, then

it determines the coefficients of the polynomial and gives afterwards a well-founded prog-

nosis, around which kind of star it could concern.

Tasks:

1. Set up an interpolation polynomial of as low a degree as possible for each of the un-

compressed spectrum data. Which points should be chosen for this? Are there any

differences between these polynomials and the results of the procedure shown above?

2. Develop a script that assigns an unknown spectrum to one of the types that have ap-

peared so far.

3. Develop a procedure to examine the most prominent absorption lines in more detail.

Plot them magnified for stars of the same class and try to determine differences "auto-

matically". Discuss your ideas before realization.

5 Examples and Tasks 76

5.17 Classification with the kNN method

In the Hertzsprung-Russel-Diagram (see Wikipedia) the

luminosity of stars is plotted above their stellar class. The

result is a kind of line from left-top to right-bottom, the

"main sequence". On this line stars like the Sun are

predominant. Right-top above the main row we find the

red giants, left-bottom below the main row the white

dwarfs. That's enough for now. (Image source: [HR])

We want to classify new stars in this diagram using the k-

nearest neighbor (kNN) method: We generate as training

data a list of stars with their coordinates (simply as image

coordinates in the diagram) and their type. If we want to

classify a new star, we determine its position in the diagram

and find the nearest k (e.g. k=5) neighbors. Then we de-

termine the most frequently appearing star type in this list.

We assign it to the new star.

First of all we need an image of the Hertzsprung-Russel-Di-

agram ([HR]). We import this into Snap! as a costume of an

ImagePad and generate the required data from it. Since

we want to draw on the image, we work with a copy of the

HR diagram in order not to change the original.

We obtain the training data by specifying a star type and

then clicking on some points in the diagram that corre-

spond to this type.

After that we can classify new stars by clicking and labeling

them.

We set some properties for the display and draw a circle at

the location of the star. Then we determine the five nearest

neighbors and the number of occurrences of their type. As

a result, we delete the headings and sort the list in de-

scending order. The type of the new star is the first element

in the first line. We write this next to the star.

5 Examples and Tasks 77

 The result:

Tasks:

1. Add the newly classified stars to the sample list so that they are included in further

classifications.

2. Draw different colored dots in the right places on the sprite for the different types of

stars, instead of labeling them.

3. Run the process for randomly selected points. Does

the same pattern always emerge? Do completely

different or similar patterns emerge? What does it

depend on?

5 Examples and Tasks 78

5.21 Drawing a function and its derivatives

We want to use a SciSnap!PlotPad to display a function and its first two derivatives in

different colors and line styles. To do this, we create a new sprite, switch to its script area,

and configure it appropriately. The function terms are specified once as a "ringified"

operator, then twice as a list of polynomial coefficients.

Tasks:

1. Plot different types of functions (trigonometric functions, logarithms, polynomials, ...)

as graphs on a PlotPad.

2. Complete the function graphs with their derivatives.

3. Select different ranges of values, precision of the number representation and text sizes

and labels for the representations.

5 Examples and Tasks 79

5.22 Data plot of points scattering around a function

graph

We create some data points close to the graph to 𝑓(𝑥) =

𝑥3 − 𝑥 and plot them on a PlotPad. To make them appear

nicely ordered, we sort the points before creating the plot,

and because it's Sunday, we connect them in rainbow col-

ors.

5 Examples and Tasks 80

5.23 Histogram of random values

We again create random points scattering around the graph to 𝑓(𝑥) = 𝑥3 − 𝑥, but this

time we choose only the first column as the data set. From these values we let create a

histogram with 10 columns.

5 Examples and Tasks 81

5.24 Covid-19 data analysis

We upload the Johns Hopkins University Covid-19 data from

2020/3/1 to 2020/4/19 for four counties to the data section

of SciSnap! and get:

Since we are only interested in the pure data, we pick out the

relevant data range for a country.

 Let's first get an overview of this:

 Then let's try it with a semi-logarithmic representation …

… pick out the two interesting columns …

… and fit the graph: We show the semi-logarithmically plotted data and the regression lines

for the two halves of the data.

5 Examples and Tasks 82

 That's when hope arose!

Tasks:

1. Plot the data for the other countries as well.

2. Try to determine whether there are correlations between the data series.

5 Examples and Tasks 83

5.25 Shadow lengths in the lunar crater Tycho

We create an image of the lunar crater on an ImagePad, import its data and create a

section through the image using the mouse. We plot the data values of the section line on

a PlotPad. From this and some additional data, the shadow lengths can be calculated.

Representation of the crater image on the

ImagePad

Data recording with the mouse

Conversion of RGB values

to gray values

Data compression with a

factor of 5

Generate a plot on a second sprite config-
ured as a PlotPad.

5 Examples and Tasks 84

5.26 Plot of mixed data

Text data is often combined with numerical data. An

example would be the sales data of different

representatives in one year in one area. If we want to

plot these graphically, then, for example, the x-axis

must be labeled with text data, while the y-axis is

treated as before. To create the graph we use the add

dataplot of mixed data block of the PlotPad. In this

case, the stage is to serve as the PlotPad.

5 Examples and Tasks 85

5.27 A simple SQL query

As an example, let's ask for the topics of all English courses

in a school database.

5.28 A more complex SQL query

Query to a school database: search for the best results in English

5 Examples and Tasks 86

5.30 Dealing with the SQL library

In practice, one needs the details of the tables of the used

database all the time. If you assign the table attributes of a

variable one by one and display them with "open in dialog", then you can place the

corresponding table data in the SciSnap! window appropriately and start the queries.

Example: The course title and rating for all of a learner's courses, sorted by grade in de-

scending order, are searched for.

Example: For statistical purposes, the schueler table should be searchable by different cri-

teria.

5 Examples and Tasks 87

5.31 Simple random graphic

We simply draw 100 randomly chosen graphic elements on top of each other.

Tasks:

1. Search the web for images by Piet Mondrian.

Try to create similar random images on the Im-

agePad.

2. Using a "vanishing point", you can create im-

ages in which objects appear to move "from

back to front". Try it.

5 Examples and Tasks 88

5.32 False color image of a lunar crater

We import the image data from a FITS file and then display it as a false-color image.

5.33 Section through an image of the lunar crater Tycho
https://www.spektrum.de/fm/912/thumbnails/Mond0.jpg.2996657.jpg

5 Examples and Tasks 89

5.36 Display of image data as histogram

An RGB image is loaded, decomposed into grayscale, and

the normalized distribution of the image values is dis-

played as a histogram on a new PlotPad. We find the ac-

tual image as the costume of an additional sprite called

"ThePicture".

First of all we load the image into the data area

SciSnap!Data:

We obtain 120,000 RBG values.

We convert these into gray values.

We switch to the PlotSprite and copy the loaded data of

the DataSprite.

Now we can plot the data as a histogram e.g. on a new

PlotPad.

Tasks:

1. Search the web for different sets of data. Display them or parts of them graphically.

2. Automate histogram generation by adding a new block histogram of <costume>. Com-

pare the histograms of typical image types. To what extent is it possible to compare

images in this way, or where might difficulties arise?

3. In the same diagram, represent the three colors of an RGB image by graphs and/or

histograms.

5 Examples and Tasks 90

 5.37 Simulation of a planetary transit in

front of the sun

We look for a nice picture of the sun (source here: [SchulAstro])

and load it as a costume of a sprite. To make it look more like

outer space, we enlarge the stage and color it black. If we also

draw the planet, we get the following picture.

The planet should pass in front of the sun as a black circle. When

we draw such a circle, we change the actual image of the sun.

Therefore, we draw a copy newCostume from this image, on

which we draw after that. Our planet should move from the very

left a little bit outside of the image (x=-2r) to the very right

(x=image width+2r) on the height y. We can also specify the

radius r of the planet.

We can determine the current brightness of this arrangement

without too many copying processes by subtracting the bright-

ness of the pixels covered by the planet from the total brightness

determined at the beginning. For this purpose, we import the

image of the sun into the data area myData and determine the

brightness around the center of the image in the radius "half im-

age width" as well as the number of pixels involved. brightness

around provides the summed gray value as well as this number.

From these values we calculate the average brightness of the

"slightly darkened" sun and store it together with the current

position in the variable transitData.

Parallel to the transit, a diagram is to be created in which we can

follow the results "live". For this purpose, we create another

sprite, which we call PlotPad and which we configure accord-

ingly. We wrap the necessary commands for this in a block called

new transit diagram.

Then we write a

block that de-

termines the

brightness data

as described

and refreshes

the diagram in

parallel. The

result corres-

ponds roughly

to one of the methods used to find exo-

planets.

5 Examples and Tasks 91

5.38 Affine transformation of an image

In the SciSnap!ImagePadLibrary we find a

block that allows to make affine transformations

in an image by mapping three points to three

others - and all other points accordingly. The

current costume of a sprite is taken as the image.

We want to mirror an image vertically at the cen-

ter line. We load the image - here: of a church -

and select corresponding points at the edges.

These combine them to the two lists source and

target.

Finally, we create a duplicate of the ImagePad

and ask it to display the transformed image as a

costume.

5 Examples and Tasks 92

5.39 Kernel application for edge detection

We configure a sprite as an ImagePad and change to the

costume of an ancient temple. We import this image into

the myData data area of the ImagePad.

On this image data we apply the Laplace kernel

[
1 1 1
1 −8 1
1 1 1

] using the block convolution kernel applied

of the SciSnap!DataLibrary and store the result in the

variable data. We display the result as a new costume. For

comparison, a second sprite represents the original image.

Tasks:

1. Images are sometimes a bit "flat". This is because they do not use the full range of

values for the three color channels from 0 to 255.

 a: Develop a method to determine and display the value range of an image.

 b: Develop a method to exploit the full range of values, i.e. map black pixels to 0, bright

pixels to 255.

 c: Summarize the method in a new block, which is passed the costume of a sprite and

returns the improved costume as result.

2. On pictures, you can try to find "faces" by highlighting related areas of a color range,

e.g. "orange", and erasing the rest of the picture. Try to develop a new block for this.

 b: Using a kernel, the edges of such areas can be isolated. Find out about suitable ker-

nels on the web, for example, and try them out for the purpose mentioned.

 c: Faces are often "oval". Try to distinguish faces from other "orange" objects in this

way.

3. a: Really artistic photos are black and white, of course. If you don't have any, you can

create grayscale images from RGB images. Do this.

 b: It looks even more artistic if the photos are "hard", that is, have a very strong con-

trast. Experiment a bit!

5 Examples and Tasks 93

5.40 Mean distance in a random graph

(Small Worlds)

We calculate the mean distance of the vertices in a graph where

first all vertices and then all edges have been created.

5.41 Mean distance in a scalefree graph

(Small Worlds)

We compute the average distance between the vertices in a

graph where alternating vertices and edges have been created.

5 Examples and Tasks 94

5.42 "Edges per vertex" histogram in a random graph

5.43 "Edges per vertex" histogram in a scalefree graph

5 Examples and Tasks 95

5.44 Breadth and depth search in the family tree

We create a family tree as a directed graph without edge

weights simply by arranging and connecting the appropriate

vertices. This is cumbersome, but simple. Just some fiddling.

In this tree we can now solve all kinds of tasks. For example, we could ask whether a person

is an ancestor of another. For this we need the number of the start node, which we

determine with . The rest is done either

by the block for the breadth search or the block for the depth search.

5 Examples and Tasks 96

In breadth and depth search, the visited vertices are marked and red when the graph is

redrawn. This shows the differences of the two search methods quite clearly.

 depth search breadth search

Tasks:

1. Determine over how many generations the relationship exists, if it exists at all.

2. Make lists of a person's relatives, e.g., parents, grandparents, aunts, brothers-in-law

 , …

3. a: Develop a script for creating a decision tree, e.g. for classifying animals or plants: In

each case, it is asked whether it is a particular specimen or, if not, what question

can be used to distinguish the named one from the current one ("Does it have four

legs?"). Either the specimen or the question is entered into the tree.

 b: Let others test your result. Try to estimate from what amount of data in the tree

such a program would be useful to use.

 c: Decision trees play a role in certain applications of machine learning (Decision Tree

Classification). Learn about the method and its applications.

5 Examples and Tasks 97

5.45 A simple perceptron as a graph

We want to ask Hilberto to use a GraphPad to illustrate how

a simple Perceptron 22 works. To do this, he is to place three

input nodes on the left of the image. in the middle sits the

actual perceptron with a jump function that transmits either

+1 or -1 to the output neuron on the right of the image. All in

all, this is a directed graph with edge weights. Hilberto sets this

up quickly: he creates a new sprite called Perceptron and

configures it properly.

Then he adds specified vertices of the perceptron net:

Only the edges are missing, first with random weights:

Hilberto assembles the blocks into a script and labels

the whole thing, and of course he ensures a consistent

situation by letting the perceptron compute through

once.

The output of the network is deter-

mined by multiplying the values of

the input neurons by the corre-

sponding edge weights and sum-

ming the results. The result is then

compared with the value of the

jump function in neuron 4. De-

pending on the result, the value of

the last edge and the value of the

output neuron is set.

22 https://en.wikipedia.org/wiki/Perceptron

5 Examples and Tasks 98

However, the perceptron is also supposed to work in

the following way: when an input neuron, i.e. a vertex

on the left side, is clicked, it is supposed to change its

value. To do this, we convert the mouse coordinates

when clicked into sprite coordinates and then ask for

the node number. If it is one of the three input neurons,

then we change its value - and let recalculate.

Ready.

Hilberto himself is amazed that it can be done so easily.

Tasks:

1. Add a way to change the value of the jump function of the central neuron.

2. Add a way to change the edge weights of the three input neurons to the central neuron.

3. Change the edge weights and/or the jump function so that the perceptron works as an

AND.

4. Change the edge weights and/or the jump function so that the perceptron works as an

OR.

5. Change the edge weights and/or the jump function so that the perceptron works as an

NAND.

6. Change the edge weights and/or the jump function so that the perceptron works as an

NOR.

7. Can the perceptron also work as an XOR? Try it!

8. Search the literature for reasons why some circuits can be well realized by perceptrons

and others not.

5 Examples and Tasks 99

5.46 A simple learning perceptron

We now change the configuration a bit to teach the perceptron

how to learn. To do this, we introduce another vertex, a "target

vertex", under the output vertex, which displays "the correct"

results, which in turn can be changed by clicking on it. If there is

a difference between the values of the output vertex and the

target vertex, the weights are changed until the "correct" result

is obtained.

What to change?

 When creating the net, only the new vertex must be inserted.

And at the click event on the

GraphPad it has to be checked if

a vertex or the pad was hit. In the

second case, learning starts.

5 Examples and Tasks 100

And how is learned?

If the values of the two neurons on the right of

the image differ, then we change the weights on

the edges of the input neurons until the correct

result is obtained.

More precisely: We give a value to each of the

three input neurons. Then, we set the desired

value on the target neuron by clicking on it as

well. Finally, we click anywhere on the

GraphPad and watch it learning.

Tasks:

1. Add a way to implement learning by making changes to the value of the jump function

in the inner neuron. Does this always work?

3. Train the network so that the perceptron works as an AND.

4. Train the network so that the perceptron works as an OR.

5. Train the network so that the perceptron works as an NAND.

6. Train the network so that the perceptron works as an NOR.

7. Can the perceptron also work as an XOR? Try it!

5 Examples and Tasks 101

5.47 Training of a neural network

A neural network of width 4 with two layers (plus input layer) is generated and trained to

deliver as output a 1 on the left and a -1 on the right, with zeros in between, when the

vector of numbers 1 to 4 is input. It is to be noted that not the exact output values, but on

the left the largest and on the right the smallest must be supplied.

The output of the net before training:

Training states after every 20 training steps:

The output of the net after training:

The positions of the largest or smallest value of the output can be determined directly

using the SciSnap!DataLibrary:

5 Examples and Tasks 102

5.48 Traffic sign recognition with a neural network of per-

ceptrons

"Deep" neural networks dominate the discussion about current "artificial intelligence".

These are mostly "fully connected" networks consisting of several perceptron layers. "Fully

connected" means that all neurons in one layer are connected to all of the next layer. Each

connection is assigned a weight that indicates its influence on the connected perceptron -

but you'd better read about that elsewhere.

Let's consider a network consisting of three layers, which receives as input the pixels of an

actual 20 M pixel photo, i.e. 2x107 pixels. The input layer consists of 3x2x107 MB numerical

values between 0 and 255 (if we omit the transparency byte). To the next layer there are

then (6x107)2=3.6x1015 connections - and then two more times. In total, 3x3.6x1015, i.e.

about 1016 weights would have to be determined - a completely utopian task for "normal"

computers. So, we will have to limit ourselves to somewhat smaller neural networks.

One way to train perceptron networks is to present them input vectors and the desired

output at the same time. The network then computes the output resulting from the avail-

able, initially randomly chosen weights, and determines the difference to the given result.

Starting from the last layer of results, it then "backpropagates" the weights so that its out-

put fits the given result "slightly better". This procedure is called backpropagation. You

should also read more about this elsewhere. The trained network results from many such

corrections. "Learning" therefore means to adjust the parameters (the weights) on the ba-

sis of many examples. With the help of these parameters, the net determines an output

vector from the input vector: it calculates a function value. Our NeuralNetPad can simu-

late and train such perceptron networks.

The weights form a total tensor with m layers consisting of nxn matrices. NeuralNetPads

should therefore master linear algebra. The only new feature is the softmax function

which can be used to scale input vectors, for example. You should

also inform yourself about this.

The dimensioning and initial assignment of the network are done in the block add new

weights. With this block we can create a new neural net of any size with random initial

weights. In this case it has the width 3 and the

depth 2.

Since displaying the many numbers would be rather confusing and

also hardly informative, the connecting lines (the edges) are color-

coded according to the values of the associated weights: from full green for large positive

values to black for small amounts to red negative weights. Since initially only positive

numbers are drawn at random, a new net is predominantly green. It shows what results

from the calculations with the input vector to be specified.

5 Examples and Tasks 103

The vertices of the net are color coded like

the edges. At the bottom, the elements of

the input vector are shown as small

rectangles. The inner layers form colored

circles and the last layer is again shown as an

output layer in rectangular form. The

direction of the calculation from bottom to

top is shown by the arrow on the far right.

Since you can easily rotate sprites, the

direction can of course also be displayed

differently.

Often you need the results of the last or an

inner layer of the net. These can be

calculated with the help of the output of...

block for a given input. Since the color

coding does not necessarily show the largest

or smallest element clearly, this can be

determined with the help of the ...of vec-

tor... block..

The training of the net is done with the help

of the block teach NN ... by backpropaga-

tion with a learning factor to be specified.

The learning factor may be somewhat larger

at the beginning, and then be reduced.

We want to train a neural network (NN) to

recognize 12 different traffic signs. To do this,

we search for images of these traffic signs in the

network and reduce them to the format 100 x

100 pixels. Now they can be displayed well on

the screen, but the 10000 pixels are of course

much too much as inputs for a NN.

To bring the amount of data within tolerable

limits, we reduce the pixels to a 2x2 format by

mean-pooling, i.e. we average the color pixels

in each of the four quadrants of the image. The

30000 values of the traffic sign image thus be-

come 12.

Because it is a difficult problem, this time Al-

berto takes the overall control.

5 Examples and Tasks 104

To start, Alberto gives the NN sprite a new

costume. Then he creates the weights for a new

(here: 12x2) net in the NN. This he lets draw with a

(still nonsensical) input. Then he sends the NN to a

well chosen place in the upper center and does the

same with the traffic sign below. Finally some

variables are set to 0. We will need them later.

Alberto first needs to reduce the amount of

image values using the pooling operation. To

apply the operation, it must import the image

data. Then it can convert them, delete the

dimensions of the reduced image specified at

the front of the list, and return the result. We

summarize everything in a new block pooling of

<costume>.

The color values of the reduced image are

assembled by Alberto into an input vector.

These are then modeled with the softmax

function of the DataLibrary in order to exclude

unfavorable input values.

5 Examples and Tasks 105

Accordingly, the training vector in training data

can be determined with the searched output

values of the NN. In our case, all values should

be 0 except for the one corresponding to the

costume number of the traffic sign.

The NN receives two new methods learn from...

and test with... When learning, the position of

the place with the largest output value of the NN

is determined and compared with the current

costume number of the traffic sign. If these

values do not match, then learning continues.

For testing, the same operation is performed

only once.

Now we have everything together to let Alberto

work reasonably.

A teaching operation consists of determining a

random costume number with the correspond-

ing costume change. Then the learning process

of the NN is started with new input and target

data. The passes are counted.

For testing, a similar procedure is followed: The

costume is changed and it is checked whether

the NN calculates the correct costume number.

If this is the case, then everyone is happy. The

percentage of correct attempts is determined.

Multiple

learning and test

runs can then be

easily triggered.

5 Examples and Tasks 106

After about 100 training runs with a higher learning rate and another 100 with a lower one

for fine-tuning, we achieve recognition rates of 100%.

Tasks:

1. Train a single-layer network with different learning rates and numbers of learning

passes. Determine the recognition rate as a percentage in each case.

2. Plot the results from 1. graphically using a PlotPad.

3. Experiment with multi-layer NNs. Will the results be better?

4. Increase the length of the input vector by changing pooling. Will the results be better?

5. Increase the number of recognizable signs by allowing more than one 1 in the output.

5 Examples and Tasks 107

5.49 Character Recognition with a Convolutional Neural

Network

The immense number of parameters in fully connected perceptron networks and the con-

sequent need for huge amounts of training data has led to other network variants to dras-

tically reduce this number. One of these is Convolutional Neural Networks (CNNs), in

which the amount of input data to the perceptron network is reduced. This type of network

is used very successfully in image and speech recognition, for example.

CNNs reduce the amount of data by first applying several kernels in a multi-step process

that filters out certain properties of e.g. an image (edges, oval surfaces, ...) and thus results

in several feature maps that usually have the same size as the original. This first increases

the amount of data. Afterwards, a nonlinear activation function (reLU) is usually applied

to the feature maps, followed by a pooling operation that reduces the amount of data

again. Mostly this is max-pooling, where the maximum value is determined from a section

of the data. If you do this with a "window" that is moved over the feature map with a

certain step size (stride), then each pooling step generates a value of the next, reduced

feature map.

As an example, let's take a kernel that filters vertical lines: it colors a point white if there is

a second pixel next to the point, otherwise black. In the "folded" image we can then rec-

ognize vertical lines of the original as bright spots. If it does not matter so much where

exactly these lines are, then we do not lose too much information in pooling. A white spot

in a feature map after various pooling processes then means: "There was a vertical line

somewhere in this area." Based on such data from several feature maps, it can then be

deduced, for example, that a horizontal line, i.e. a corner, was also located there. If we had

searched for "beige" areas as well as "oval" shapes, then the chance of identifying faces

would not be so bad at all.

We now want to build a model for such a CNN that can distinguish the handwritten digits

zero and one. For this we use a DataSprite for auxiliary operations, an ImageSprite for

the actual image and - of course - a NeuralNetSprite for the perceptron network at the

end of the chain. Another, "normal" sprite named Alberto will control the operations. To

make the model easier to use, we add some buttons as well as a pen to make the interface

clearer. In the screen shot, the image to be analyzed is at the top of the box, while the

…

the original

convolution

(3 Kernel)

pooling pooling
convolution

(3 Kernel)

perceptron-

network

5 Examples and Tasks 108

neural network displays its result at the bottom. In between, the various intermediate lay-

ers are scrolled through and displayed from top to bottom. As a bonus, the model includes

the possibility to draw your own numbers.

Our CNN is trained with 10 digits each from 64x64 pixels for the zeros and ones. Then it is

supposed to "recognize" these as well as other handwritten ones. Actually, we would have

to train several kernels of our CNN specifically for this task. Instead, we take only two

known kernels for the recognition of vertical and horizontal lines, because by the re-

striction to two everything can be displayed on the screen and the results are even halfway

interpretable. (The recognition rate, however, suffers heavily from this!) Thus, only the

perceptron network with four input values is trained.

In the image above, after two stages of reduction, four feature maps of 16x16 pixels each

are left, each of which has been run twice through the operations Convolution reLU Max-

Pooling: on the far left with the kernel for vertical lines, then with both kernels in different

order, and finally twice with the kernel for horizontal lines. The numbers below indicate

the mean value of the brightness measured over the entire image. If we apply this to dif-

ferent digits, then the possibility of measuring differences between zeros and ones be-

comes apparent, despite the very simple procedure.

5 Examples and Tasks 109

In the image above, after two stages of re-

duction, four feature maps of 16x16 pixels

each are left, each of which has been run

twice through the operations Convolution

→ reLU → Max-Pooling: on the far left

with the kernel for vertical lines, then with

both kernels in different order, and finally

twice with the kernel for horizontal lines.

The numbers below indicate the mean

value of the brightness measured over the

entire image. If we apply this to different

digits, then the possibility of measuring dif-

ferences between zeros and ones becomes

apparent, despite the very simple proce-

dure.

Let's look at the functionalities of the indi-

vidual objects:

The ImagePad provides the data of a new costume as a basis for analysis. To do this, it

creates a "first layer" as a list first layer, which consists of two copies of itself. On each of

these it then applies a convolution with two different ones. After that a few lines are

drawn.

After that, each copy must pass through a reLU (rec-

tified linear unit), which serves as an activation func-

tion. In this case, negative values are simply set to

zero.

5 Examples and Tasks 110

Finally, a pooling operation is performed to reduce the

amount of data. As an example the pooling operation with

the four sprites of the second level is given.

Alberto, as the controller of the whole

thing, has to ask the ImagePad to change

the costume and analyze it afterwards. In

doing so, he strictly adheres to the speci-

fications for CNN's.

The initialize

method only takes

care of drawing

the lines on the

stage. The other methods work with two layers of

the CNN, first layer and second layer, each con-

taining the versions of the digits that appear on

the stage. So that they do not interfere with each

other, they work with copies of the ImagePad,

not clones.

After the required copies have been created, they

are asked by Alberto to perform the respective

CNN operation. Finally, the clones of the last

level, which are now quite small (4x4 pixels), are

displayed in a greatly enlarged form as "final feature maps". These are used to train the

neural network.

The neural network in the form of a NeuralNetPad is supposed to generate the largest

output at output 1 for zeros and at output 4 for ones. This is of course completely arbitrary.

The current output value is determined by the

function output with <input>. With its

components the net can be trained, if we

succeed in determining the average values from

the last level of second layer. We still model

these suitably with the softmax function.

5 Examples and Tasks 111

And - has the network learned anything? Let's write a number:

Well - there is still room for improvement!

5 Examples and Tasks 112

Tasks:

1. Generate a list of 16 values from the final feature maps.

2. Analyze this list by a neural network of width 16.

3. Test whether the recognition rate increases, especially of

newly written digits. If yes: how do you justify the effect?

4. Also experiment with multilayer neural networks.

5 Examples and Tasks 113

5.51 k-means-Clustering

In the data palette, two blocks are available for k-means clustering, but they (of course)

only provide the final result. Let's illustrate the whole process here. For this we create a

set of e. g. 100 random points with "JavaScript coordinates", to each of which we append

the cluster number. This is initially "-1", because no clustering has taken place yet. For this

we create "k", e.g. 5, "centers". Points and centers are displayed as circles or squares on

the stage. We determine the colors, initially gray, from the cluster number.

We number the centers and enter

their coordinates in a list center-

Paths so that we can track their

movements ...

... and get the following image:

5 Examples and Tasks 114

The k-means method now determines the nearest center for each point and colors the

points in its color.

Then the centers are moved to the

center of the set of points assigned

to them. The new positions are en-

tered in the position list.

The procedure is continued until there are no more changes in the clusters. We plot the

movements of the centers using the stored positions.

5 Examples and Tasks 115

Weg get the result:

Using the existing blocks, we could of course have obtained the result a bit simpler - but

just without representing the process:

5 Examples and Tasks 116

5.52 DNA relatedness and Levenshtein distance

We want to determine the closest "relative" to a given DNA sequence from a list of DNA

sequences, e.g. to determine whether an animal was killed by a wolf. To do this, we first

generate a DNA list.

Using the Levenshtein distance

between two strings, we can now

determine which of the strings is

closest to the given one and how

large their distance is.

 Notes 117

Notes

1. SciSnap! is not made for small displays, but it runs fine on a larger monitor.

2. The examples in this script are mainly intended to show different ways of using the

SciSnap! libraries. It is not their task to give examples for good teaching, but hopefully

they give hints on which level to work.

3. Accordingly, this script largely lacks examples that the learners can use to find and work

on their own problem areas and solutions. If you have any "best-practice" examples, I

would be grateful if you could point them out to me. Perhaps a collection of them could

be created.

4. The libraries certainly still contain errors and possibilities for improvement. I would also

be grateful for hints on this.

For the rest, go for it!

List of examples 118

List of examples

In most examples blocks of several libraries are used together!

Mathematics Seite

 1. Representation of complex numbers 42

 2. Affine transformation of a triangle in R2 43

 3. Rotation of a pyramid in R3 44

 4. Graph of normal distribution 45

 5. Cartesian product of three sets 46

 6. Representation of a set of points and the regression line 47

 7. Interpolation polynomial through n points 48

 8. Approximation of a tangent by secants 50

 9. Finite series 52

10. Application of the Taylor series to the mathematical pendulum 54

11. Fourier expansion for a square wave signal with numerical integration 57

Data Seite

12. NY Citibike Tripdata 1: Correlations 61

13. Income data from the US Census Income Dataset 62

14. NY Citibike Tripdatea 2: data processing 64

15. Under- and overfitting 65

16. NY Citibike Tripdata 3: World Map Library 68

17. Star spectra 72

18. Classification in the HR diagram according to the kNN method 75

19. Data import and export: CSV import 38

20. Data import and export: JSON import 39

21. Data import and export: writing CSV and text data to a file 41

22. k-means-Clustering 112

23. DNA-Relöatedness und Levenshtein-Distance 115

Diagrams Seite

24. Drawing a function and its derivatives 77

25. Data plot of random data scattering around a function graph 78

26. Histogram of random values 79

27. Covid-19 data analysis 80

28. Shadow lengths in the lunar crater Tycho 82

29. Plot of mixed data 83

SQL Seite

30. Simple SQL query 84

31. More complex SQL query 84

32. Data import and export: SQL import 39

33. Dealing with the SQL library 85

List of examples 119

Image processing Seite

34. Random graphic 86

35. False color image of a lunar crater 87

36. Slice through the image of the lunar crater Tycho 87

37. Data import and export: false color image of Saturn 38

38. Data import and export: data import with the mouse 40

39. Plot of image data as histogram 88

40. Simulation of a planetary transit in front of a sun 89

41. Affine transformation of an image 90

42. Kernel applications for edge detection in images 91

Graphs Seite

43. Mean distances in a random graph (Small Worlds) 92

44. Mean distances in a scalefree graph (Small Worlds) 92

45. Histogram "edges per vertex" in a random graph 93

46. Histogram "Edges per vertex" in a scalefree graph 93

47. Breadth and depth search in the family tree 94

48. A simple perceptron as a graph 96

49. A simple learning perceptron as a graph 98

Neural networks Seite

50. Training of a neural network 100

51. Traffic sign recognition with a neural network 101

52. Character recognition with a Convolutional Neural Network CNN 106

References and sources 120

References and sources

[ABELSON] Abelson, Sussman, Sussman: Structure and Interpretation of Computer

Programs, MIT Press

[Census] https://archive.ics.uci.edu/ml/datasets/census+income

[DBV] Burger, W., Burge, M.-J-: Digitale Bildverarbeitung – Eine Einführung mit

Java und ImageJ, Springer 2006

[FITS] de.wikipedia.org/wiki/Flexible_Image_Transport_System

[HOU] Hands-On Universe: handsonuniverse.org/

[HR] https://studylibde.com/doc/2985884/hertzsprung-russell--und-farb-hel-

ligkeits

[JSON] Popular Baby Names: https://catalog.data.gov/dataset/most-popular-

baby-names-by-sex-and-mothers-ethnic-group-new-york-city-8c742

[NYcitibike] https://www.citibikenyc.com/system-data

[SchulAstro] www.schul-astronomie.de

[SQL] Modrow, Eckart: Computer Science with Snap!,

http://ddi-mod.uni-goettingen.de/ComputerScienceWithSnap.pdf

[UniGOE] Institut für Astrophysik, Universitaet Goettingen

https://archive.ics.uci.edu/ml/datasets/census+income
https://de.wikipedia.org/wiki/Flexible_Image_Transport_System
https://handsonuniverse.org/
https://studylibde.com/doc/2985884/hertzsprung-russell--und-farb-helligkeits
https://studylibde.com/doc/2985884/hertzsprung-russell--und-farb-helligkeits
https://catalog.data.gov/dataset/most-popular-baby-names-by-sex-and-mothers-ethnic-group-new-york-city-8c742
https://catalog.data.gov/dataset/most-popular-baby-names-by-sex-and-mothers-ethnic-group-new-york-city-8c742
https://www.citibikenyc.com/system-data
http://www.schul-astronomie.de/
http://ddi-mod.uni-goettingen.de/ComputerScienceWithSnap.pdf

