

Eckart Modrow

Computer Science

 with

– Snap! by Examples –

Version 2

© Eckart Modrow 2022

emodrow@informatik.uni-goettingen.de

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 International

License. It allows download and redistribution of the complete work with mention of my name, but no

editing or commercial use. In addition to the book, the listings of the described projects are loadable from

the following address:

http://emu-online.de/projectsOfCSwithSnap2.zip

The scripts are developed with Snap! 8.0.0.

Prof. Dr. Modrow, Eckart:

Computer Science with Snap!

Version 2

- Snap! by Examples -

© emu-online Scheden 2022

All rights reserved

If this book is helpful for you and you would like to express your appreciation in form of a donation, you can

do so at the following PayPal account:

emodrow@emu-online.de

Intended use: Snap! book

This publication and its parts are protected by copyright. Any use in others than legally permitted cases requires the prior

written consent of the author.

The software and hardware names used in this book as well as the brand names of the respective companies are generally

subject to the protection of goods, trademarks and patents. The product names used are protected by trademark law for the

respective copyright holders and cannot be freely used.

This book expresses views and opinions of the author. No guarantee is given for the correct executability of the given sample

source texts in this book. I assume no liability or legal responsibility for any damages resulting from the use of the source texts

of this book or other incorrect information.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Preface 3

Preface

This book, similar to its predecessor "Computer Science with Snap!" 1, uses a collection of programming

examples to explore the scope of the graphical language Snap!. It does not replace a textbook that conveys

CS content but shows how to use Snap! to apply CS methods. In this second version, some reflections on

computer science education, especially on the concept of objects and the relationship between infor-

mation, data, and visualization, are prefaced. Examples explaining their consequences can be found below.

Snap! in the present version 8.0.0 represents the next step in the development of graphical tools. The

current version was extended among other things by features in the area of object-oriented programming

(OOP), list operations and multiple stages as well as metaprogramming and thus meets all requirements up

to high school graduation and far beyond. Since also drastic improvements were reached with the working

speed and libraries for different ranges, e.g. with the pixel access, in the audio range or with the use of

external resources are available or can be developed easily new, hardly restrictions in the application areas

exist. If it must be, one can still use JavaScript functions for time-critical operations or extensions within

Snap!. The libraries contain numerous examples of this. 2

The selection of problems in the following chapters is relatively conservative, in some cases leaning closely

on existing computer science curricula, but also going beyond these. This is intended. I hope on the one

hand to "pick up" the teaching colleagues from traditional courses, and on the other hand to provide con-

texts that give meaning to the computer science content to be acquired from the learners' point of view.

This way should result in lessons that are very much oriented towards creativity, but also towards the teach-

ing of informatics concepts. The examples describe in detail the handling of Snap! from different aspects.

After a few considerations about didactics in this area, an introductory chapter follows, which explains how

to work with Snap! "on the fly". Then the next chapters illustrate the possibilities of the language. Sections

without direct application reference also follow. This compromise is due to space requirements because

extended concepts actually require extended problems. The examples are not arranged hierarchically, even

the second part contains rather simple ones. At the end of the script there are overviews of the methods

used in the examples as well as an index.

This book is a translation from German. Unfortunately, I do not speak English well, so it will be bumpy. I

apologize for that. Because all programs had to be changed as well, this task could only be done by me. Be

strong and hold it! Many thanks for the wonderful help of the DeepL3 translation program. I would proba-

bly never have finished without these.

I would like to thank Jens Mönig for his support - and for the results of his work. The learners will be thank-

ful!

I wish you a lot of fun working with Snap!.

Göttingen, 2022/9/15

1 E. Modrow, Informatik mit Snap, https://emu-online.de/ComputerScienceWithSnap.pdf
2 SciSnap!2 is discussed in more detail in https://emu-online.de/ProgrammingWithSciSnap.pdf
3 https://www.deepl.com/translator

Content 4

Content

Preface ………………….…….……… 3

Content ……………………………..…………………………………………………………………………………….……………………….… 4

1 Didactical Remarks …………………………..…………………….………………………………………………………..…..……… 7

 1.1 Data, Information, Stories, and Visualizations ……….…………….………………….………………..…..…….. 7

 1.2 Computer Science and Media Education ….…….………………………………………………………..…..……… 16

 1.3 Objects and Inheritance by Delegation …….…..…………………………………………………..…..…………..… 18

2 About Snap! ……………….……………………..…………………………………………………………………………………….…… 19

 2.1 What is Snap!? ……….…….………………..…………………………………………………………………..………………… 19

 2.2 What is Snap! not? …..……… 20

 2.3 The Snap!-Screen ………..……..……..……….………………………………………………………………………………… 21

 2.4 Example for Experienced Users: Flu …………….……………………………………………………………….…….... 23

 Writing own Methods ………..……………………………………..………………………………..……………….…….... 23

 Elementary Algorithms and Variables ……………………..……………………………………..…………...…….... 25

 Create Objects …..…………………………….…………………..…………………..………………………………...…….... 26

 Communicate with Objects …………….………………………………………..…………….……………..…………..... 27

 Draw a diagram ………….…………….……………..…………………………..……………….…………………………..... 29

3 Examples for "Data and Information"..……....……….……………………………………..…………………..….………… 31

 3.1 Examples for Communication in a Given Context ……………………………………………..……..…………… 31

 At the Greengrocers.………………………………………………....……..…………….……………………….…………… 31

 Swimmers …………..…………………………………………………....……..…………….……………………….…………… 33

 Self Portrait ……………………………………………………………....……..…………….……………………….…………… 34

 In the Bistro …………..………………………………………………....……..…………….……………………….…………… 35

 Searle's Chinese Room …………..………………………………....……..…………….……………………….…………… 36

 3.2 Examples for Communication with an Open Question …..……...……….……………………….…………… 37

 Distance Learning Astrophysics …………..…………………....……..…………….……………………….…………… 37

 Calculation of the Distances of the red and blue Pixels from the Center of the Galaxy ……….... 40

 Weizenbaum’s Eliza ….……………………………………………....……..…………….……………………….…………… 42

 3.3 Examples for Communication with a Clear Question ……………...……………………………….…………… 44

 The Knowledge Society …….……………………………………....……..…………….……………………….…………… 44

 Access to Databases …..………….………………………………....……..…………….……………………….…………… 46

 Access to JSON-Data ..…..……………………………………....……..………….…….……………………….…………… 47

 3.4 Communication without Human Partners ……..……………………………….……………………….…………… 49

 License Plate Detection ……….…………..……………………....……..…………….……………………….…………… 49

 Streaming ………………………………………………………………....……..…………….……………………….…………… 52

 Zero Knowledge Authentication …..……….………………....……..…………….……………………….…………… 54

4 Simple Examples ..……………….…………..…………………………..………………………………….……………..….………… 56

 4.1 A Lawn Mower ...…………….………..………………………………..…………………………………..……….…………… 56

 4.2 In the Aquarium ….………….……………..…………………………..…………………………………..……….…………… 57

 4.3 The Sun System …..….………………..………………………………..…………………………………..……….…………… 58

 4.4 Caesar Encryption ……..…..…………………………..………………………………………..………………….…………… 59

 4.5 A Color Mixer ...……………….…………………………………….……………………………..………………….…………… 61

 4.5 Tasks …..…………….………………………………………………….……………………………..………………….…………… 62

Content 5

5 Simulation of a Spring Pendulum ..…………………………………………………………………………………..….………… 63

6 Troubleshooting in Snap! …………………………………………...………………..………………………………..….………… 67

7 Lists and Related Structures ……………………….…………….……………………………..…………….………..…………… 69

 7.1 Sorting with Lists - by Selection ………….…………………………………………..…………………………………… 69

 7.2 Sorting with Lists - Quicksort ………………………..……………………………………………………………..……… 71

 7.3 Shortest paths with the Dijkstra method ……..……….……………………………………………………..……… 72

 7.4 Matrices and own Loops ………………………..…………………………..………….…………………………………… 75

 7.5 Higher Level List Operations ……………………..………………………..………….…………………………………… 77

 7.6 Recursive List Operations ………………………….………………………..………….…………………………………… 80

 7.7 Hyperblocks ……………………………………….………………………….……………….…………………………………… 81

 7.8 Fast Image Manipulation with Precompiled Blocks ……………………………………………………………… 84

 7.9 Tasks ………….………………………………………………………………….……………….…………………………………… 85

8 Object-Oriented Programming ………….……………………………….………..…………….………………………………… 86

 8.1 Fiona and the Filing Cabinets …..….…………………………………….………………………………………………… 89

 8.2 Magnets …..…………………………………………………………………….…………………………………………………… 93

 8.3 A Learning Robot …………………………..…………………………………………………………………….……………… 94

 8.4 A Digital Simulator ...…………………………………………..……………………………………………….……………… 98

9 Graphics …….…….………………..……………………………………….………………………………………………………………… 104

 9.1 Line Graphics with Koch- and Hilbert Curve ….…………………………………………………………..………… 104

 9.2 The RGB Color Cube ……………………….…………………………………………………………………………………… 107

 9.3 Printing and Cutting Costumes ………………………………..………………..………………………………………… 109

 9.4 Drawing on Costumes - with an own JavaScript Library ………………………………….…………………… 110

 9.5 Drip Painting ……………………………………….………………………………………….…………………………………… 115

 9.6 Edge Detection ………………….….……….…………………….………………………………………………………..…… 117

 9.7 Tasks ………….…………….…………………………………………………………………….…………………………………… 121

10 Image Recognition ..………………………………………………………………………………………………………..….………… 122

 10.1 A Barcode Scanner ….……..…………………………………………..…………….…………………………..………………122

 10.2 Project: Transit Prohibited! ….…….………………………………………………………..…………….………………… 126

 10.3 Project: Face Detection ………….………………………………………..…………………..…………….………………… 132

 10.4 Tasks …..……….…………………………….…………………………………..…………………..…………….……….………… 137

11 Sounds ..….………………..………………………………..…………………………………………….…………………………..……… 138

 11.1 Find Sounds …..……..…………………………………………………………………………….………………………………… 138

 11.2 Process Sounds ..……..……………………………………..……………………………………………………..……..……… 138

 11.3 Make Music with Jens Mönig ...……..……………………………..…………………………………………………….… 140

 11.4 Project: Hearing Test .……………………………………………………………………………………….…………..……… 142

 11.5 Tasks ……...……..………………………………………………………………..……………………………………….…..……… 143

12 Project: Electrons in Fields …….………………….…..…………………………..……………………………..……….………… 144

 12.1 The Electron Source and the Experimental Setup …………………………....…………………………..……… 144

 12.2 The Capacitor and the Electric Field …………….…………………………………....………..…….………………… 145

 12.3 The Helmholtz Coils and the Magnetic Field ………...…………………………………………….………………… 146

 12.4 The Electrons …..……..………………….……………………………..……………………………………….………………… 147

Content 6

13 Texts and Related Topics ……….…………………..………………………..…………………………………………….………… 149

 13.1 Operations on Strings ……………………..…………………………..…………………………………………..…………… 149

 13.2 Vigenère-Encryption ………………………………………………………………………………………………………..…… 152

 13.3 DNA-Sequencing ……………………………….………………………………………………………………………………..… 154

 13.4 Text Files, Server, and Frequency Analysis ...……..……….……………………………………….………………… 157

 13.5 SQL Databases ...……….………………………………………..………………………….……………………………..……… 161

 13.6 Tasks ………….…………………………………....………………………………………………………………..………………… 167

14 Computer Algebra: Functional Programming .……………………………………………………………….……………… 168

 14.1 Function Terms ………….……………………………………………………………..…………..……………………………… 168

 14.2 Parse Function Terms ..………………………………………………..………………………………………………..……… 169

 14.3 Derive Function Terms …..…………………………………………..………………………………………………………… 173

 14.4 Calculate Function Values and Draw Graphs ………..…..……………………………………………..…………… 176

 14.5 Tasks …………….…………………………………………………………..………………………………..…………..…………… 179

15 Artificial Plants: L-Systems …………..……………….……………………………………………………………….……………… 180

 15.1 L-Systems …………………….……………………………………………..…………………………………..…………………… 180

 15.2 Create the Drawing Instruction .……………………………..……..………………………………………..…………… 181

 15.3 The Stack Operations ……..…………………………………………..…………………………………………………..…… 181

 15.4 Drawing the Plants ……………...…………………………………………………..…………………………………………… 182

 15.5 Tasks ……………………………………….………………………………..……………..……………………………………..…… 183

16 Automata ……………………….…………………………………….…………………………….………………………………………… 184

 16.1 Correct Mail Addresses ..……………………………………………..……………………………………………..………… 184

 16.2 Hyphenation: Kevin Speaks ……....……………………………..……..………………………………………..…….…… 186

 16.3 Coupled Turing Machines ….........………………………………..……………………………………………..………… 190

 16.4 Cellular Automata: Iterated Prisoner's Dilemma ………………….…………………………………..…………… 195

 16.5 Tasks ……………………………………………………………………………………………………..……………………………… 201

17 Projects ………….……………………………..…………..……………………….……………….…………….………………………… 202

 17.1 LOGO for the Poor ……………………………..…………………..…………………………………………………………… 202

 17.2 SnapMinder by Jens Mönig …....…………………………………………………………………………………………… 208

 17.3 Connectivity: The World is Small …..………………………..…………………………………………………………… 214

 17.4 Evolution …..………………………………………………………..……………………….……………………………………… 221

 17.5 Rate Websites: PageRank …..……………………………………..………………………………………………………… 225

 17.6 The Smart Scale ………………………………….……………..………………….…..………………..……………………… 231

 17.7 License Plate Recognition ….…..………………………………….………….…..………………..……………………… 237

How to … ? ……………………….…………………………………………………….…………………………………………………..……… 242

Index ……………………….……………….…………………………………..……………………………………..……………………..……… 245

1 Didactical Remarks 7

1 Didactical Remarks

1.1 Data, Information, Stories, and Visualizations4

Modeling and implementing as well as reasoning and evaluating belong to the core of the process-related

competencies of school computer science. For teaching, their relationship is crucial: on the one hand, learn-

ers should independently create solutions to problems, for which they acquire technical knowledge and, of

course, also need training in the use of tools; on the other hand, the subject matter should enable discourse

on social and political issues based on the acquired technical competence. The relationship between the

three areas of tool use, technical issues and social impact determines the framework for general education.

Or to put it more sharply:

How much time should be spent on tool training, i.e. learning how to use the programming language and its

development framework, so that there is enough time for the students to solve problems independently and

to reflect on the results?

Without this time, the subject actually has no place in general education schools. In the following, we will

examine in a little more detail the information-oriented didactics of computer science prevalent in German-

speaking countries, the terminology used therein, and the implications for the choice of tool and its use.

The German Society for Computer Science (GI)

writes on the above competencies:

"The process of modeling is not only learning content,

but also a consistent method of computer science

teaching, although implementation is also indispensa-

ble to make the result of modeling tangible. Reasoning

and evaluation promote the learner's ability to com-

municate and to argue; without this area, dealing with

computer science systems is only intuitive or playful

and often determined by influences from media."5

The GI mentions as contents for the middle school the connection between information and data, different

forms of representation and operations on data and their interpretation in relation to the represented in-

formation. In the upper secondary school6, a distinction is to be made between characters, data and infor-

mation as well as between syntax and semantics and information is to be represented as data with data

types and in data structures. The current curricula largely adopt these specifications.

In addition to the contents, the sample tasks are particularly interesting for teachers, because from them

an idea of the intended teaching can be gained well. In the area considered, there are traditionally treated

topics from the field of data structures and databases, but almost nothing about information. This term

appears mostly only within word combinations (information technology, information society, ...), and it is

used contradictorily. If, for example, information is defined as "the semantics of a statement, description,

instruction, communication, or message" 7, then it is not quite clear to me how these semantics are to be

4 largely from Modrow, E., (2017). Ist der Informationsbegriff für die Schulinformatik hilfreich?
 LOG IN: Vol. 37, No. 1. Berlin: LOG IN Verlag. (S. 38-43).
5 Attempt of a corresponding translation from German by me. The same is true for the following translations.
6 may be high school
7 https://kultusministerium.hessen.de/schule/kerncurricula/gymnasiale-oberstufe/informatik

1 Didactical Remarks 8

"processed automatically by machines"8. It seems that teaching cannot be easily derived from a term that

is not sharply enough defined, even if it is used prominently in the competency domains. So, it is worthwhile

to look a little deeper into the meaning of information.

In information-centered computer science didac-

tics, the concept of information is usually ex-

plained using the diagram on the right 9. If one de-

rives content areas from it, one comes very fast

e.g. to the automatic processing and linking of rep-

resentations, thus to data. Information-centered

didactics just as quickly turns into data-centered

didactics when it comes to concrete teaching.

From the diagram it becomes clear that the con-

cept of information used in computer science di-

dactics has neither to do much with Shannon's in-

formation theory nor with the everyday equiva-

lence of information and data. The level of infor-

mation is hardly linked with computer science con-

tent, so that an implementation in teaching is dif-

ficult or requires breaks in content.

We therefore need precise and mutually compati-

ble definitions for the terms used. The knowledge

pyramid 10 seems to me to be helpful for this,

which, in addition to data and information, also

contains the levels of knowledge and symbols. As

a starting point we choose the definition of

knowledge from Wikipedia11:

Knowledge is [...] understood as a collection of facts, theories, and rules available to persons or groups, which

are characterized by the greatest possible degree of certainty, so that their validity or truth is assumed.

Knowledge is thus bound to persons and consequently cannot exist within today's machines. There we find

data. Since knowledge cannot be complete and can even be wrong, gaps in certainty arise which can be

closed or reduced by information12.

Information is the subset of knowledge needed by a particular person or group in a specific situation and is

often not explicitly available.

This definition is similar to that from the GI Education Standards, "Information is the contextual meaning of

a statement, description, instruction, communication, or message.", but related to the knowledge modified

by the information. Information is also tied to individuals who recognize and evaluate the meaning of the

data. It is time and situation dependent. If a person receives a message twice, for example, the information

content is much smaller the second time, because the knowledge gap was already closed by the first infor-

mation. Information depends on the one hand on the data used for its transmission, but on the other hand

8 http://www.schulentwicklung.nrw.de/lehrplaene/upload/klp_SII/if/KLP_GOSt_Informatik.pdf
9 http://www.informatikstandards.de/index.htm
10 https://derwirtschaftsinformatiker.de/2012/09/12/it-management/wissenspyramide-wiki/
11 https://de.wikipedia.org/wiki/Wissen
12 https://de.wikipedia.org/wiki/Information

knowledge

information

data

symbols

1 Didactical Remarks 9

it also depends on the state of the receiver. The receiver pragmatically integrates information into his ex-

isting knowledge, links it with it - or not. Up to this point, there are no problems: Information is in the head,

data in the computer. The concept of information has no place on the machine level, to which we now turn.

Data is represented by symbols of the selected character set, which we can understand here as code. The

syntax of this representation describes the structure of this representation.

The above-mentioned concept of information is person related. Information can therefore not be seen

without the interpreting person, e.g. because the same data can represent completely different information

for different persons. Without their context, data lose the property of being information. They are reduced

to what they are without meaning: just data. In the knowledge pyramid model, the relationships are clear:

the receiver interprets the received data and tries to make sense of its semantics. This step occurs before

the linkage with his existing knowledge and largely independent of it. The interpretation depends on the

receiver and its state; it cannot be done solely based on the data. After the interpretation, the receiver

decides whether the meaning of the data represents information for him.

In my opinion, we should refrain from squeezing the concept of data into the information-centered scheme

as was done above. Data is a category in itself, bound to a physical representation. If, for example, an ocean

sonde measures temperatures, stores them, and then is lost, then the physically represented measure-

ments exist as data, even if, unfortunately, they never become information. If an operating system stores

system status in log files, then these data exist, even if they are never evaluated by humans. The definition

of data as representations of information confuses the above concept of information with the colloquial

one and leads to the unattractive situation that the meaning of information seems to be satisfied when

data and their structures are considered. But this is not true.

Our investigation has a simple result: the two lowest levels of the knowledge pyramid are accessible to

computer science. They are linked to the traditional content areas. The two upper ones are at least partially

intrapersonal, going beyond pure computer science. Like the area "computer science and society" they re-

fer to the meaning of computer science systems, this time not so much politically and socially, but related

to personal concern. The concept of information is part of the general educational contribution of school

computer science. This is not achieved if the treatment of data-related topics is equated with information-

related ones.

We want to work out the consequences of our considerations in four situations. For this we name the two actors

of the information transfer scheme shown above as Susi (sender) and Rudi (receiver) and reduce the labeling in

the scheme.

Case 1: Susi sends the message "Have arrived!" to Rudi.

The message can only have meaning for Rudi if Susi

and he are clear about its sense. Thus, if Rudi knows

that Susi is either on her way to Hanover or to her-

self, then he can interpret the message, even includ-

ing subtexts such as the missing "well" that might

suggest some complications. Susi, on the other hand,

knows that Rudi is waiting for her message and will

understand it in its brevity. She can express her infor-

mation through appropriate data. Susi and Rudi act

within a shared context that allows them to interpret

the message. Without this context this is not possi-

shared context

Communication in a given context

1 Didactical Remarks 10

ble, and therefore the context should also be included in the schema. However, it should not remain there,

because of course the classroom consequences are relevant, not the schematic ones. In the classroom, such

a context can be well realized through stories, as we are doing right now. Thus, not only suitable data struc-

tures and protocols result from a problem, but also the visualization of the situations, the connection of

the technical topics to the actors of the story, may it be the inhabitants of a farm, the story of the relation-

ship between Susi and Rudi, or the elements of a simulation. It should also be possible to manipulate the

data occurring in it, in order to be able to observe what is happening without effort and to control the

results. What one sees usually does not need to be explained separately. Both, the visualization of the con-

text and the data, should be easily possible in a development environment suitable for schools.

In this first case, the role of the computer system is completely secondary, clearly separated from the ex-

change of information. Susi could also have called out loud, sent a postcard, drummed the message or had

it transported by carrier pigeon. And vice versa, the ability of the computer system to encode texts appro-

priately, to transport the characters and to represent them again is completely independent of the infor-

mation transport. The task of the system is to mark the characters in such a way that they can be recognized

as text and represented by a suitable subsystem. This task is performed automatically, e.g. by marking the

data packets or the file on the basis of the established syntax. This has nothing to do with understanding.

All in all, the example suggested by the basic scheme is unproductive from an informatics point of view. In

my opinion, it should only be used if the information aspect is to be particularly emphasized in the lessons.

Case 2: Susi sends the message "mostly in the afternoon" to Rudi.

In this case, the common context, steeled in many

crises, is not supposed to be present because Susi

and Rudi are more or less random communication

partners in the network. Since Susi cannot arrange

and transmit appropriate data without this context,

Rudi must first establish the context. Therefore, the

communication process has to be started by him by

asking an appropriate question to Susi. The question

is interpreted by Susi in such a way that she can iden-

tify the desired information and convert it into data. In turn, Rudi must interpret the received data as an

answer to his question and evaluate it as the information he is looking for. This is represented in the schema

by double arrows. A lot can go wrong on both sides. Susi can misunderstand the question if it is not formu-

lated completely clearly. So, she can receive wrong information from Rudi and generate correspondingly

wrong answers, which can be misunderstood by Rudi again.

Again, the interesting things happen in the minds of the participants. We could discuss the importance of

non-verbal communication and address the role of emoticons, examine text comprehension in different

social or cultural contexts, or the need for video telephony. All of these are important school topics worthy

of discussion. What they have in common, however, is that we do not approach them through knowledge

of either the network protocols or the data structures used. The specialized informatics topics are irrelevant

to the role of information discussed here.

Communication with an open question

1 Didactical Remarks 11

Case 3: Susi sends the message „Berlin, Bern, Bucharest“ to Rudi.

In this case, Rudi has asked his question so precisely

that Susi can evaluate it unambiguously. An interpre-

tation and thus a context suitable for understanding

is not necessary. But this also eliminates the role of

Susi as a person. She can be replaced by a computer

that answers the question as long as some syntax

rules are respected. Rudi can ask e.g.:

SELECT name FROM cities WHERE istCapital = „yes“

AND name like „B%“ LIMIT 3;

The information is distributed very one-sidedly in this case. Rudi knows what information he needs. He

describes the data required to close the knowledge gap and retrieves it from an information system. Neither

on the way from Rudi to the system nor within the system there is even a hint of information. This arises

only in Rudi's head after he has received Susi's answer.

Since this third case corresponds very directly to communication in and with information systems, its ana-

lysis is important for learners. Whether they use digital assistants, consult databases, or use search engines,

they are expected to have an unambiguous description of the data needed to answer questions - whether

it suits them or not. While the systems may reflect understanding, or it may be attributed to them by the

users, they do not possess it. Awareness of this prevents overestimation of the answers received and un-

derestimation of the user's responsibility for his or her question. The more the role of the communication

partners is blurred, the less clear the evaluation of the results becomes.

Case 4: Rudi transfers his tasks to a program and goes swimming.

After Susi has already been replaced by an algo-

rithm, in this case by an SQL server, Rudi could also

get the idea that his tasks can be performed better

and faster by an algorithm. He claims that he can

describe his interpretation of Susi's data sufficiently

precisely by a program that extracts information

from the data and also immediately initiates any necessary actions. Is this true? We choose high frequency

trading in the banking system as an example. Susi transmits the current prices at her stock exchange, Rudi

evaluates the differences to his stock exchange and initiates corresponding buy or sell instructions.

Since Rudi, now as a machine, has no knowledge, also no knowledge gaps can be closed with him. Therefore,

it cannot be information in the defined sense. The algorithm Rudi has indeed emerged from the knowledge

of the person Rudi about the processes in stock exchange trading, but it does not represent this knowledge

completely, and above all, it does not link it with Rudi's remaining knowledge. The gaps in this knowledge,

which must be closed for concrete reactions in stock exchange trading, require the current stock exchange

values. For this purpose, the algorithm has variables, i.e. blanks, which are updated by Susi. Depending on

these values, Rudi runs through its sequences of instructions in different order and triggers the correspond-

ing actions. No interpretation is required for this. It is a pure automation process.

We can learn a few things from the four cases considered. The first two show that human communication

can be problematic, regardless of the medium used. The latter gets its meaning from the fact that it makes

communication possible and from its distribution. The concept of information is irrelevant to the technical

issues of data processing that arise in the process.

Communication with a clear question

Data exchange without human partners

1 Didactical Remarks 12

The other two cases are more interesting. The third describes quite well the roles of the user and the IT

system in information retrieval. The intelligence here lies entirely with the user. The user describes the data

required to generate the information sought and is thus also responsible for this description. If the descrip-

tion is imprecise, then he receives corresponding answers. If, as in case 2, the questioner asks a human

expert, the expert must infer the information sought from the context and, with the help of the IT system,

collect and transmit the data required to answer the question. He or she then also assumes responsibility

for its relevance. In case 3, the demands on the questioner increase considerably, because he must now be

an expert. There are no more excuses. His question is always evaluated, e.g., via statistical correlations or

by searching for matches to the question text verbatim in the network, but it is not understood. In order to

be able to sort the resulting data at all, the system must supplement the missing context, e.g., by evaluating

past questions or similar questions from others. The danger that this creates "echo chambers," for example,

which always generate data with the same tendency, is discussed as a current problem that endangers

democracy.

In this scenario, the information aspect leads to the question of what the user needs to know in order to be

able to ask appropriate questions; to know both about the subject of the question and about how the used

system works. The traditional subjects of school computer science are thus extended by an aspect that is

suitable for evaluating the relevance of these very subjects against the background of life in a society shaped

by computer science systems. Information-centered didactics understood in this way requires the develop-

ment of new teaching components to further develop the subject in the direction of current general edu-

cation. It links the subject content with its social significance. To be able to do this with reasonable effort,

it requires tools that, on the one hand, keep the time required for tool training small, i.e., free up time for

other things, and, on the other hand, give space to the context in the form of stories in addition to an

appropriate consideration of the specialized topics.

The fourth case describes the transfer of human tasks to information technology systems. People can de-

scribe from their knowledge and experience how to react in different situations. Machine learning methods

then transfer descriptions of this knowledge into suitable (data) structures. Within the framework of these

structures, the automated systems react in a manner comparable to humans, usually even faster and more

reliably. But what happens if the description is incomplete or new situations arise? Since the evaluated data

retain their data character throughout the entire process, i.e., they never become information, their se-

mantics are also never made accessible. If they mean something different than actually intended, then no

one understands this change in meaning because it cannot be linked to existing knowledge from perhaps

completely different areas. (By the way: the use of neural networks does not change this assessment). In

these cases, the clear separation of data and information makes it possible, for example, to discuss respon-

sibility for the consequences of automation (for example, in autonomous driving) and to explore the ethical

boundaries (for example, in the selection of training data). The information aspect creates clarity in argu-

mentation and prevents socially relevant issues from being clouded by a retreat to technical content. It

enables political discourse on the position of informatics systems.

Information-centered didactics has led to a somewhat inflationary use of the term information in almost all

areas of school computer science, at least in German-speaking countries. It loses its sharpness and espe-

cially its function to give orientation in the planning of lessons. The traditional content areas, such as data

and data structures, are not harmed by the fact that they now have the additional claim of also taking the

information aspect into account. But it reduces the chance to accentuate teaching of computer science in

the direction of its general educational function. If, on the other hand, we reduce the concept of infor-

mation to its original meaning, then we expand the subject canon of school computer science to include

socially relevant aspects that can have a direct impact on the planning of the curricula.

1 Didactical Remarks 13

As an example, let's look at the concept of the "knowledge society", from which it is sometimes concluded

that knowledge no longer needs to be acquired if it is available to everyone "on the Net". On the basis of

our considerations, we can immediately see that it is not that simple after all. In the net we do not find

knowledge, but data. Instead, there are a number of questions that need to be clarified before information

acquisition in the knowledge society can really work out:

• What basic framework of knowledge do learners need to have in order to be able to identify their

knowledge gaps at all?

• What competencies do the learners need to acquire in order to be able to accurately describe the data

required to close the knowledge gaps? Can they even describe what they don't know?

• What knowledge about the informatics systems providing the data do learners need to acquire?

• How do learners learn to assess the relevance of the data provided relative to their question?

• What happens if the answers are "colored", e.g. adjusted to the questioners?

• What data does the answering IT system obtain from the questions? What information can be derived

from it?

The concept of information thus proves to be quite clearly effective in the area of "computer science and

society". We should leave it there. In my opinion, this restriction does not limit its importance. On the con-

trary: if a term can clearly accentuate the orientation of a school subject, that is not little. It is a lot.

If the concept of information is not very productive with respect to data, but helpful with respect to the

area of computer science and society, the meaning of the content area "data" must follow from itself -

otherwise it will be difficult to justify the existence of this area from a general education point of view.

Among the mentioned content areas of this domain, besides the somewhat interspersed concept of infor-

mation, the classical topics of a standard area of computer science can be found: the area of algorithms

and data structures. It seems to me that computer science structures its contents differently than current

computer science didactics for a good reason: obviously there are not too many points of contact between

data and information, but there can be no separation between algorithms and data structures, because the

other area is indispensable for the one. This also becomes clear in the GI demand for "modeling and imple-

mentation as a continuous method". Even if the scientific structuring of the content areas is not a manda-

tory requirement for didactics, it should be taken into account, because it is certainly not senseless.

The question is somewhat different: Which parts of the basic scientific curriculum are relevant for general

education-oriented didactics at a certain point in time? Or still differently: If "in former times" certain tech-

nical questions were also important for schools, because the technical and professional development had

only reached a certain state at that time, then this does not yet result in a compelling justification for the

relevance of these technical topics at a later time. Linear data structures (stack, queue, ...) may serve as an

example: In universities they are still relevant and there closely related to the algorithms working on them.

In school they had their importance, because without their implementation advanced student work could

hardly be realized. With the tools available today, however, it must be asked whether the implementation

of these structures is still necessary. If lists are available that can be visualized well, then the linear struc-

tures actually only differ in the place of their access, the beginning or end of the list - and this can be seen.

It is intuitively clear what causes which operation.

Now, in the area of schools, it hardly makes sense to consider the processing of data as a purpose in itself.

What is required is again a context from which the need for its transformation arises. Data thus acquire a

meaning; their processing takes place for a specific purpose. Without this context, the acquisition of com-

petencies from the area of "reasoning and evaluating", which is central to the justification of the school

subject computer science, is also hardly realizable. The context is therefore to be taken seriously. It is of

equal importance to the subject. Pseudo-contexts, which only serve to get to the subject content as quickly

1 Didactical Remarks 14

as possible, are rather counterproductive. If the context is obviously meaningless, then this "nonsense" is

easily transferred to the subject, which consequently also appears meaningless to the learners.

Data originates from the context and flows back into the context in a modified form. Physical computing

may serve as a prime example, where sensor values are collected by the computer system and used to

generate actuator control data. ("When it rains, the windows are closed." "When the train comes, the barrier

is better down.") The example also shows that simple numerical values can have their meaning as data.

However, they do not have this meaning "per se“ but gain it within the given framework. The example also

shows that the learners do not necessarily have to solve tasks that the teacher has set but can work on

problems that they themselves have derived from the context. They do not work on exercises, but act as

problem solvers, in this case as small constructors who make life easier for other people or prevent catas-

trophes. The transformation of data is not an end in itself, but a means on the way to a goal they have set

themselves.

The context does not necessarily have to be real (as in physical computing) or simulated (through the mul-

timedia properties of visual programming languages). It can also be a story from which the informatics

question arises. Computing a certain percentage according to a given procedure need not motivate every-

one. But if one asks the question about the contribution of e.g. Germany to the damages of a hurricane in

a completely different place13, then a single number gets an immense meaning, even if we can determine

it only rudimentarily. Even the recognition of a digit in a picture becomes interesting for learners if, for

example, the problem of recognizing car license plates arises from an exciting story or a current case. No

matter how the context is chosen: its importance for the motivation of the learners requires that the de-

velopment environment can take it into account, through graphics, sounds, animations. To ensure that this

representation does not displace the actual subject content, the context representation must be very easy

to manage.

Structured data of the same type usually occur in direct form as strings or images. Therefore, there are

separate data types for them. Linear data sets occur either as sequences of input/output values (data

streams) or as character strings which are transformed for certain purposes (cryptography, ...). Both possi-

bilities show that the embedding in a meaning-giving context follows as if by itself. In the case of images,

the required transformation usually follows directly from the problem definition. Image enhancement, color

changes, edge detection and consequently object detection, classification of images, etc. may serve as ex-

amples. Since the representation of these data sets as list-like structures or tables is intuitively clear, their

algorithmic treatment is usually not a big problem. The situation is somewhat different with the control of

the developed algorithms. Since these structures can contain a lot of data, the ease of visualizing them,

from which the current state of the data set can be seen, is crucial for learners. In schools, therefore, it is

not so much the algorithmic components (which are always present) that matter, but the visualizability of

their effects.

13 Friedericke Otto, World Weather Attribution, https://wwa.climatecentral.org/

1 Didactical Remarks 15

Direct "data processing" no longer plays a major

role in schools because special tools such as data-

base systems have taken over the partial tasks. The

data are therefore largely elements of models in

which they describe the parts of the systems and

represent interrelationships. Together with the de-

mand for a context that seems meaningful to the

learners, it follows that the subject area "data"

should be predominantly embedded in a subject

area "modeling".

1 Didactical Remarks 16

1.2 Computer Science and Media Education

In schools and universities, the teaching of media competence is being hotly debated as part of the " digi-

talization offensive". Since the term " digitalization" obviously concerns computer science, the latter should

take part in the discussion. Teaching institutions need to think carefully about what exactly their contribu-

tion to overall education is. On the one hand, children and young people gain knowledge and experience

also - and in many areas predominantly - outside these institutions; on the other hand, the goals of "edu-

cation" and "training" should be sharply distinguished. Young people do not need to master the use of

current professional tools; they can safely leave that to adults. But they must be prepared to take over their

role with future tools.

It is and has often been argued that learners need to learn how to use modern media in order to lose their

"fear of them". I think this is absurd. Firstly, children and young people are normally not afraid of media,

they are curious about them. Secondly, they learn how to use them quickly and easily from others and

through use. The fear is more on the part of the older ones, who have not grown up with this technology

and therefore feel insecure about it. Those who are currently older should remember that in their youth,

those who were older at the time discussed how they could be gently introduced to mouse-controlled in-

terfaces in order to take away their fear of them. We can learn from this that handling current technology,

such as smartphones, is learned along the way, but that this obviously does not automatically lead to using

future technology in the same uncomplicated way.

Conclusion: Learners must be enabled to understand the fundamentals of future technologies and to acquire

the skills to use them. For this, they need general knowledge of the technical fundamentals of information

technologies, but not specialized knowledge of the current technology.

It goes without saying that media use is not the same as media consumption. The passive use of media of

whatever kind, e.g., simply "gawking," cannot be the goal of the educational system. When we deal with

media, they must occur in a context that activates learners.

Conclusion: The learners must be enabled to select and use tools, e.g. for the creation of media, depending

on the problem. To do this, they must learn to solve problems independently.

Education for independent problem-solving is usually not seen as a central task, at least in schools. Creative

subjects such as art, music and sometimes languages at least sometimes strive for this. Mostly, however,

the focus is on good learning. Computer science now provides tools that can be used to realize, test, and

improve one's own ideas even in a relatively rudimentary form. It would be a missed opportunity if the

subject did not realize creative teaching for the learners. However, this will only work if the teachers them-

selves have experience in independent, creative problem solving and if they trust the learners to do so. If

the teachers have only " well learned" the informatic contents, then it will not work out with the creativity

in the lessons. If independent problem solving is to be aimed at in schools, then this should and must also

have consequences for teacher training at universities.

Conclusion: Teachers must be enabled to plan and implement creative lessons. Opportunity and space must

be given for this in their own training.

Modern media such as social networks have changed social life, communication, etc., in some cases pro-

foundly. The consequences can hardly be foreseen while this process is still ongoing. Much less were they

foreseeable before it was started. I would therefore consider it a complete overload for teachers to demand

that they deal with the actual social consequences of IT systems, which include the effects of digital media,

in the classroom. That would also not be effective, because looking at the consequences that have already

occurred is necessarily backward-looking. What can be demanded, however, is to show that the use of

1 Didactical Remarks 17

information systems has social consequences and that these depend very much on how the systems are

designed. Different problem solutions therefore have different consequences - and vice versa: If certain

consequences are undesirable, then it will usually be possible to find another technical problem solution.

Conclusion: The learners must experience that there are almost always different solutions to a given problem.

They should think about their effects, which are of course not conclusive. They learn that these effects are

not given but can be shaped.

What does this have to do with Snap!

Graphical programming environments like Snap! not only contain the algorithmic components but are em-

bedded in a media environment that not only allows, but requires the use of graphics, sound, If a prob-

lem is being worked on, then cameras and graphics programs can and should be used to create the appro-

priate costumes and allow costume changes that visualize the current state of the system. Sound programs

allow to comment on the process itself, to edit and insert music or to design it by oneself. And, of course,

the results must be presented, because product pride is an important motive for dedicated work and inter-

est in the results of others is great. Snap! supports just the presentation aspect by the new possibility to

switch between several stages.

Snap! allows algorithmic problem solving on a high level, but it does not only allow the analytical approach,

but also the playful, the experimental, the creative, ... What it does not allow is passivity, because nothing

happens by itself. Media are essential system components, e.g. for visualizing the results - and they can also

be the results themselves. Snap! therefore offers the chance to construct model solutions to current prob-

lems, e.g. also and especially in the media field. Through the self-created algorithmic framework of the

model, understanding for the observed processes in the real model emerges. The experience of being able

to gain this knowledge oneself enables the active, critical examination of future technology. The examples

in this book are intended to show that this is possible in many areas with the aid of elementary methods.

They are intended to encourage people to get started themselves.

1 Didactical Remarks 18

1.3 Objects and Inheritance by Delegation

If somewhat more extensive problems are processed, then the number of subproblems to be solved also

grows. Often, these can be combined into groups that can be assigned to concrete objects. An important

aspect of this way of working is that teamwork based on division of work can be realized well in this way,

in which the different teams create objects that solve subtasks. The object-oriented way of working is often

realized by creating classes that describe the behavior of a group of similar objects. Instances (exemplars)

of these classes are then created to solve the problems. The approach is largely top-down and requires

some abstraction. More suitable for beginners is the prototype-based approach used in Snap!, in which an

example, the prototype, is created for each group of objects, which is developed and tested step by step. If

one is satisfied with the result, then further objects of this kind are derived by duplication (cloning) of the

prototype.

To object-oriented programming the concept of the inheritance belongs centrally, which can be realized by

classes or by delegation. In the original article of Lieberman14, which describes the prototype-oriented pro-

cedure with the delegation already very early, objects are understood as embodiment of the concepts of

their class. Thus, the elephant Clyde stands there for

everything, the viewer understands by an elephant. If he

imagines an elephant, then it is not the abstract class of

elephants that appears in his mind's eye, but Clyde. If he

speaks about another elephant, here: Fred, then he de-

scribes him like this: "Fred is just like Clyde, except that

he is white.”

What does this approach mean for the learning process? If the learner knows only one copy of a class (here:

Clyde), then the prototype describes his knowledge completely, an abstraction is senseless for him. If he

then gets to know other copies and describes them by modifying the original, i.e. replaces some methods

by others, changes attributes and adds new ones, then the image of the class itself slowly emerges as an

intersection of the common properties. Only now the abstraction process is comprehensible to him and,

after a few attempts, viable itself. Delegation is thus a method that maps the learning process itself by

creating prototypes instead of classes. In Snap! we work predominantly according to this principle, which

is presented in detail below.15

In Snap! prototypes are created as sprites and equipped with the desired attributes and methods. Once

their behavior has been sufficiently tested, clones can be created dynamically using the clone block. For

each sprite it can be displayed from which sprite it was derived (parent) and which children it has (chil-

dren...). The parent property can also be set and/or changed afterwards, so that the system of dependen-

cies is dynamic. If the program stops, then all dynamically created clones are deleted, which is beneficial

A clone initially inherits (almost) all local attributes and methods of the parent object. This is indicated by a

"paler" representation in the palettes. If a sprite overwrites inherited attributes or methods, then these

replace those of the prototype as usual. If you delete the overrides again, the inherited attributes or meth-

ods appear in the palettes.

14 Lieberman, Henry: Using Prototypical Objects to Implement Shared Behavior in Object Oriented Systems,
1986, http://web.media.mit.edu/~lieber/Lieberary/OOP/Delegation/Delegation.html
15 If you absolutely want it, then you can also implement a class system.

2 About Snap! 19

2 About Snap!

2.1 What is Snap!?

Snap! 16 was (and is) developed by Brian Harvey and Jens Mönig for the Beauty and Joy of Computing pro-

ject17 and is freely available on the Internet. Since the system runs in the browser, it does not require any

installation and works on almost all devices18. Its interface and behavior are similar to Scratch19, another

free programming environment for children developed at MIT. However, the implemented concepts go far

beyond that: here the roots lie with Scheme, a dialect of the LISP language, which has long been used at

MIT20 as a teaching language in the education of computer science students. It is introduced, for example,

in a famous textbook by Harold Abelson and Gerald and Julie Sussman21. Snap! is thus a fully developed

programming language, which consequently can be used in (almost) all problem areas. For most of them it

is now also sufficiently fast. This is not self-evident and was a shortcoming of its predecessors. Graphical

languages are largely concerned with controlling the state of the system and thus allowing, for example,

infinite loops to be interrupted or access errors to data structures to be "tolerated". This leaves little time

for the actual program execution.

Snap! is a graphical programming language: Programs (scripts) are not entered as text, but are composed

of tiles. Since these tiles can be put together only if this makes sense, "wrongly written" programs are largely

prevented. Snap! is therefore largely syntax-free. Nevertheless, it is not completely free of syntax, e.g.

because some blocks can process different combinations of inputs: if you put them together incorrectly,

errors can occur. However, this is more likely to happen with advanced concepts. If you use them, you

should know what you are doing.

Snap! is exceptionally "peaceful": errors do not cause program crashes but are indicated by the appearance

of a red mark around the tiles that caused the error - without dramatic consequences. The used tiles, which

include the newly developed blocks, are always "alive". They can be executed by mouse clicks, so their

effect can be directly observed. This makes it easy to experiment with the scripts. They can be tested, mod-

ified, disassembled into parts and reassembled in the same or different ways. This gives us a second ap-

proach to programming: in addition to problem analysis and the associated top-down approach, there is

the experimental bottom-up construction of subroutines that are assembled to form an overall solution.

Snap! is descriptive: both the program sequences and the assignments of the variables can be displayed

and tracked on the screen if required. This makes it ideal for simulations, for example.

Snap! is extensible: by the implemented LISP concepts new control structures can be created, which work

e.g. on special data structures.

Snap! is object-oriented, even in different ways: Objects can be created both by creating prototypes with

subsequent delegation and in different ways via classes.

16 https://snap.berkeley.edu/snap/snap.html
17 https://bjc.berkeley.edu/
18 Meant, of course, computers, tablets, smartphones, …
19 http://scratch.mit.edu/
20 Massachusetts Institute of Technology, Boston
21 Abelson, Sussman: Struktur und Interpretation von Computerprogrammen, Springer 2001

2 About Snap! 20

Snap! is first-class: all structures used are first-class, i.e. can be assigned to variables or

used as parameters in blocks, can be the result of a function block or the content of a data

structure. Furthermore, they can be unnamed (anonymous), which is important for the

implemented aspects of the lambda calculus, the basis of LISP. Consequently, the logo of

Snap! contains the same proud lambda that used to be found in the hair of Alonzo, the

mascot of BYOB.

2.2 What is Snap! not?

Snap! is not a production system. It is a learning environment that was developed, among other things, on

behalf of the U.S. Department of Education as part of CE21 (Computing Education for the 21st Century) and

is also intended to reduce the dropout rate in technical subjects. It is a tool for implementing and testing

informatics concepts in an exemplary manner.

Snap! is primarily used for work in the field of algorithms and data structures, but essential areas of com-

puter science such as access to files or hardware can also be embedded in the browser environment, some-

times via libraries. The microphone and the camera of the computer are directly addressed, and the built-

in url block allows quite simple accesses to the Internet and thus, for example, via intermediate servers, the

use of databases or external hardware

Since the code of Snap! is freely available, there are different modifications. Whether this is a blessing or

a curse remains to be seen. In any case, there are now specialized versions e.g. for the areas of physical

computing, robot control or work in the network, so that corresponding simple examples of the first ver-

sion of this script have been deleted.

Alonzo

2 About Snap! 21

2.3 The Snap! - Screen

The Snap! screen consists of six areas below the menu bar22.

• On the far left are the command tabs, which are divided into the categories Motion, Looks, Sound, and

so on. If you click on the corresponding button, the tiles of this section are displayed below the button.

If they do not all fit on the screen, then you can scroll the screen area in the usual way. If you want, you

can display the tiles of all sections one below the other.

• To the right of this, i.e. in the center of the screen, the name of the object currently being edited - called

a sprite in Snap! - and some of its properties are displayed at the top. You can - and should - change the

default name of the sprite here.

• Below this is an area where, depending on the tab, the sprite's scripts, costumes and sounds can be

edited or created.

• At the top right is the output window in which the sprites move: the stage. This can be resized using the

buttons above it, the entry in the settings menu (Stage size ...), a corresponding command block or by

simply "dragging" with the mouse. If you set the checkmark in front of the variable name in the Variables

palette, the variables will be displayed on the stage, if necessary, with a slider that allows you to easily

change the values. Since variables can contain anything (numbers, texts, lists, sprites, programs, ...), the

state of these variables can be visualized at any time.

• At the bottom right, the available sprites are displayed. If you click on one, the center area changes to

its scripts, costumes or sounds - depending on the selection. To the left of the sprites, an icon of the

stage, or, if available, the icons of several stages are shown. You can also switch between them by click-

ing on them. Each stage has its own project, which is independent of those of the other stages. However,

it is possible to exchange data between the projects.

22 The layout of the areas can be changed using .

2 About Snap! 22

• The menu bar itself offers the usual menus for loading and saving the project and individual sprites on

the left. Furthermore, several settings can be made. One possibility is to set the language. I still recom-

mend staying with the English version, because this way you can distinguish your own blocks, e.g. named

in German, from the native ones at first sight.

• On the far right we find the green flag known from Scratch, with which several scripts

can be started simultaneously when using the corresponding block. The pause button

next to it pauses everything and the red button ends all running scripts. Individual scripts or tiles can be

started by simply clicking on them.

2 About Snap! 23

2.4 Example for Experienced Users: Flu

Level: high school Materials: Flu

The example simulates the spread of a flu epidemic under different conditions. It serves as a quick overview

of the main possibilities of Snap! and is intended especially for experienced programmers. Beginners

should rather read the next chapters first.

The question is what proportion and

which particular groups of people in a

population should be vaccinated if the

spread of an influenza epidemic is to

be stopped. The question is not so

easy to answer, because the result de-

pends on various parameters: the

probability of infection indicates how

likely it is that a healthy person will be

infected when in contact with a sick

person, the seroconversion time is the time between infection and immunization, the numbers of healthy

and sick persons at the beginning of the simulation determines the number of contacts between them, and

the type and number of multipliers indicates how many persons in the population have particularly many

contacts or contact with particularly widely separated groups. If one of them becomes infected, for exam-

ple, the disease is quickly carried to distant areas. Since contacts, infections, etc. are random, we will only

obtain viable results if we run the simulation several times with the same parameter values in each case -

and then it still remains to discuss which values represent "results" in the sense mentioned at all. The topic

is therefore perfectly suited for a small classroom project. A "steering group" develops the superordinate

scripts, which we want to assign to the Stage here. It coordinates the distribution of tasks with the other

groups. The other groups develop auxiliary methods as well as the prototypes Person and Graph, each

with its own stage, which are almost independent of each other, and think about the data exchange.

Writing own Methods

It is often necessary to get rid of the created clones of a prototype

without terminating the program. We achieve that here by a new

local method delete all clones of <a prototype> of the stage.

This is a command block, that is, a command that (here) has a

parameter. (Function blocks are called reporters in Snap!) New

blocks are written in the block editor, which is invoked with the

Make a block button we find in the palettes or by right-clicking

on the script layer and there in the context menu. First, we spec-

ify the method name, with spaces and special characters if de-

sired, select the type (Command, Reporter or Predicate) and

specify whether it is a global (for all sprites) or local (for this

sprite only) method. We can also choose the palette in which the

block will be included and the color it will be given.

2 About Snap! 24

In this case, we first create a new palette (category)

using the file menu (New category...), name it My

own blocks and select an optimistic green as the

color, which clearly distinguishes the own blocks

from the default ones. After pressing the Return

key, the block editor opens and the block name ap-

pears - with + signs in the spaces and margins.

There, by mouse clicks, we can open another menu

that allows to insert parameters (or more

texts/symbols) in these places and specify their

type if needed. In our case we click on the far right,

enter the parameter identifier prototype and click

on the small right arrow for typing. Then a selection

box opens. 23 We select Object (the arrow) as the

type, return to the block editor and drag the re-

quired commands into its script area.

Our method uses two script variables (clones and

thisClone) which are known only in this block. It

asks the parameter prototype, which is later passed

with a reference to the "parent person", for its chil-

dren - these are then all dynamically created "per-

sons" that occur. 24 As long as there are any of them

left, it remembers the first one in one of the script

variables, deletes it from the list and then asks this

person to delete itself with tell <thisClone> to

<delete this clone>.25

The method is called by passing an object (here:

person) to it.

23 This box and the details of the current Snap! version are described in great detail in the Snap! reference man-
ual, which can be obtained by clicking on the Snap! icon at the top-left of the window.
24 The clones created statically via the context menu in the sprite area are not found there.
25 The delete block can only be found in the sprite palette. But you can reach it in the stage by using the search
function at the top of the palette area.

2 About Snap! 25

Elementary Algorithms and Variables

To set the parameters and other control values, we use the Stage, which

we click on in the Sprite area. This stage reacts to the message "Green flag

clicked" by setting the initial parameters and determining which variables

are to be measured during the simulations. After that, corresponding sim-

ulation runs are started.

In detail: We can "fish" a reference to the Person prototype using the ob-

ject block from the Sensing palette. If needed, we can store it, like any

other value in Snap!, in a variable, which can be either global (for all

sprites) or local (for this sprite only). Variables are created in the Variables

palette using the Make a variable button. At the same time, we can create

all other required variables, whereby those that are only required within

the stage are marked as local. You can recognize them by the "marker" in

front of their name. The others are global. Global variables are displayed at

the top of the Variables palette, followed by the current local ones. Then

the output area is cleared, some variables get appropriate initial values and

a list called simulation data, which should hold the simulation results, is

cleared (set <simulation data> to <list>). This part could well have been

put in a separate block, but since we want

to experiment with the variable values, it

is better to have them "on the table".

In the following, the number of initially

vaccinated (the number of immune nor-

mals) is gradually increased from zero to

100. The control structures for this can be

found in the Control palette. For each

value, a series of simulation runs is per-

formed and the average of the results

(here: the maximum number of in-

fected) is determined. The variable num-

ber of simulations determines how often

this is done. After each run, the results are

entered as a percentage in the simulation

data list. Finally, it is asked to generate a

graph from this data. Another working

group can take care of this.

2 About Snap! 26

Create Objects

In the control program a method simulate is used.

In it, some initial values are reset and the corre-

sponding number of individuals is generated, differ-

ing in type (normal, multiplier) and status (healthy,

infected, immune). To increase the speed, this is

done in a warp block. Then the simulation run is

started by sending the message "come on!" which

is "heard" by all objects in the system.

How to create objects?

In the create a person of type <type> and status

<status> method written for this purpose, we first

declare a local script variable to which we assign a

reference to a newly created clone of the specified

prototype. After that, the clone exists, is visible, and

is accessible under the name person - very simple.

However, the clones should differ in type and sta-

tus. For this they contain (in this case) a local

method inherited from the prototype setup sta-

tus: <status> type: <type>. We have to call this

with the parameter values passed. We therefore

tell the object person that it should execute this

method. Since this is local for persons, we take the

<attribute> of <object> block from the Sensing

palette, select the prototype (in this case: Person)

in the right field and then the desired method (in

this case: setup ...) in the left field. Because there

are two parameters to be specified, we expand the

block with the small arrow keys and specify the sta-

tus and type behind with inputs. The block is to be

understood as "person, please execute in your con-

text of methods and variables the passed method

with the given parameters". The block is equivalent

to the well-known dot notation of OOP languages:

e.g. person.setup(status,type);

2 About Snap! 27

Communicate with Objects

We now come to the actual actors of our flu project: the persons. These are symbolized by

small circles whose color expresses their status. "Normal" persons scurry around in their envi-

ronment in a relatively small scale, meeting the neighbors they can infect or who can infect

them. After a certain time, the seroconversion period, they become immune and are no longer

infectious, nor do they become infected. Vaccinated people are immune from the beginning.

Some of the people are "multipliers", that is, they jump around quite wildly and can spread the

infection quickly. They are similar to the normals but color-coded slightly differently. We make

appropriate costumes in the graphics editor or a drawing program and import them into the

Costumes area.

After creating the persons, they all receive the message "come on!"

to which they react because they have a hat block from the Con-

trol palette that reacts to "come on!". After

that, they get into a loop that terminates

when the global variable finished? gets the

value true. This is the case when there are

no more infected, so when the list of clones

that are still infected is empty.

In this loop the following actions are executed repeatedly:

1. Objects near the person are searched and stored in the neighbors list.

2. All remaining neighbors are infected if necessary or infect the person if they are ill.

3. It is checked whether the person must be immunized after the seroconversion time has expired. The

corresponding variable values are changed.

4. After that, the person moves according to their type.

5. After the loop is finished, the clone deletes itself.

Since these processes involve exchanging data between persons and initiating method calls from the other

persons, the example shows some procedures for doing so:

The tell <object> to <run this script> block is used to ask a person to get in-

fected. If you call a function (which returns a result) of another object, you use

the ask <object> for <reporter> block. Attributes and local methods of other

objects are obtained via the my <attribute> block from the Sensing palette,

which you have already met. Here we query the state of an object by executing

the <attribute> of <object> block in the context of the other object. The blocks

are surrounded by a gray ring (ringified) indicating that the unevaluated code of

the block is passed and not its actual result.

In two places below, local methods - shown in green - are executed in the context of the object. This hap-

pens "normally" when the block is reached.

2 About Snap! 28

Persons respond on the message „come on!“:

The method show yourself selects

the appropriate costume.

The method infect infects the current object if necessary and en-

ters freshly infected into the corresponding list. After that, the ap-

pearance of the object is changed.

2 About Snap! 29

Draw a diagram

Finally, we want to have our results represented in a diagram. We

measured the initial number of vaccinated (in %) and the maxi-

mum number of infected (in %). For this purpose, we create a sec-

ond stage called Graph with New scene from the File menu26. On

this stage there is a new, second project, which has nothing to do

with the first one. Its objects, variables and methods are unknown

in the second scene. However, we can use the export/import func-

tions to send objects and/or scripts from one project to the other

- i.e. via files. In addition, we can switch between scenes, sending

data from one project to another. We want to go this "internal"

way.

In the second scene, we create an object called Pen,

which we give a nice pen as a costume. First, we let the

pen draw a coordinate system on the screen and label

it. We find the blocks for this in the Pen palette.

The determined data are availa-

ble in list as variable simulation

data. They are sent to the Graph

scene after completion of the

simulations. The Pen object re-

trieves this data from the mes-

sage variable and stores it as

data.

26 only to show this possibility already here

2 About Snap! 30

After that, the data points are transferred to the

diagram. We send the pen to the first data point

given by a list with the two entries mentioned.

After that we guide it lowered to the remaining

points - with some conversion.

The result can be admired on the output area:

In each case, 300 "persons" without multipliers and with only one initially infected person were used (red:

infected, yellow: immune, green: healthy). As can be seen, if half of the population is to remain healthy in

this model, then 30% must be vaccinated.

3 Examples for "Data and Information" 31

3 Examples for "Data and Information"

3.1 Examples for Communication in a Given Context

As described in the didactic considerations, we need scenarios in which the computer system only acts as a

vehicle for messages that are "understood" by the participants. In the simplest case it only represents the

context, e.g. in the programming of a story. However, the information system is not irrelevant, because on

the one hand its use is learned and thus later, more "informatic" tasks are prepared. On the other hand,

the use of different objects communicating via messages provides an intuitive introduction to object-ori-

ented modeling. The following examples are therefore particularly suitable for the beginning of a program-

ming course.

At the Greengrocers

Level: from middle school Materials: At the greengrocers

Two people act in a store27, e.g. by a customer en-

tering the room (with leg movements through cos-

tume changes) and then sending a message ("I'm

here!"). Thereupon the saleswoman appears, asks

for the wishes, ... - all controlled by messages. The

context in this case is clear and largely given by the

background image, and since the objects react only

to certain messages, it is also clear what to do in

each case. Even if the situation is trivial, there is no

doubt about the distribution of roles: Messages in

the information system consist of texts which are

interpreted by the agents and, if necessary, trigger

actions.

Scripts of the customer:

27 Costumes partly from Scratch and/or own photos.

3 Examples for "Data and Information" 32

Vendor scripts:

The given animation program, which the learners should be involved in creating, provides a simple frame-

work for the initial lessons, which is modified and supplemented by the learners. Not to be underestimated

is the work with the costumes, e.g. to visualize movements. Working with the built-in graphics editor and

other graphics programs, which in turn provide different graphics formats, which is important, for example,

for the transparency of the background, motivates some of the learners more than the direct entry via

scripts. If different costumes are created, then they should of course also be used - and for this, one needs

program scripts. The detour via the graphics leads to the algorithms - however, based on self-created (par-

tial) products, which can greatly increase the motivation.

Why is the graphic representation so important for the learners? The context is not only revealed by the

texts, but also by the appearance, posture, etc. of the actors and their environment (see: "In the Bistro"

below). What is portrayed here does not have to be said anymore, but it is decisive for the interpretation.

There is a difference whether the exclamation "That's cabbage!" occurs in a greengrocer's store or in a

classroom.

The example leads to different stories that emerge after establishing a defined initial state ("green flag

pressed") in the interplay of messages sent and events triggered by them (with their treatment) following

the given examples. The quality of the results is then expressed in the imagination, complexity and wittiness

of the stories.

Although messages, events, possibly states, which can be described by local variables as "additional attrib-

utes to the already existing ones" are used, the focus of what happens should not be on technical language.

Of course, it is necessary to talk about the processes, and then one may as well use the usual terms. But

this is only a (quite desirable) side effect. The goal of teaching is to activate the learners and to encourage

imaginative action. The use of a formalized way of speaking ("The attribute x-value of the object customer

is reset by calling the method change x by -5.") is rather not part of this. It is sufficient to state that the

customer moves to the left.

3 Examples for "Data and Information" 33

Swimmers

Level: from middle school Materials: Swimmer

We draw a swimmer in different swimming

phases and duplicate it several times. On a mes-

sage ("Go!") the swimmers swim with randomly

chosen initially variable speeds to the other end

of the swimming lane. When one reaches the

edge, he is happy and stops all other swimmers

(and himself) by sending a message.

The trainer's mini scripts are trivial …

… and also, the swimmers have not much more to

do than swim.

This example, whose background image defines the context without further explanation, also serves only

to make clear the differences between the message and the information conveyed. However, it can easily

be extended, e.g. by assigning fixed speeds to the swimmers (which requires a new attribute, i.e. local var-

iable) or by having them turn around at the end of the lane to swim back to the starting point. Other swim-

ming styles can be easily represented, success statistics can be kept, and the stop at the finish can be greatly

improved. However, the connection between the victory message and the coach's statement "I don't be-

lieve it!" remains the secret of those involved.

3 Examples for "Data and Information" 34

Self Portrait

Level: from middle school Materials: Self-portrait

The students introduce themselves: where they live,

their way to school, their hobbies, …

In this case, the distribution of roles is even clearer: the

computer system provides images and texts, i.e. data.

The person portrayed was responsible for selecting

them, and this selection is supposed to make Paula ap-

pear sympathetic to the recipients of the data. Does

that work?

 Script of Paula:

Paula knows nothing about the recipients of her data. If they like

dogs, the sympathy will work out: Almost everyone thinks pup-

pies are cute. But if they have a cat that is chased by the neigh-

bor's dog, they will find that Paula's dogs will have to be treated

with caution in a few months. In that case, Paula should rather

use pictures of equally cute kittens. So, it would be in Paula's in-

terest to know as much as possible about the recipients and to

adapt her self-presentation to these interests if she wants to ap-

pear sympathetic to everyone.

If Paula were a politician, a company, or any other institution, she

would have a massive interest in gaining data from her "readers".

Even trivial data like dog/cat preferences can be deduced from

the purchase of pet food - not always correctly, but mostly. For

normal citizens they are probably uninteresting, for the politician

however not, because he must decide whether he hugs on his

press photos more children, dogs, or cats. If he can send the right

picture to every interested party, then the resulting wave of sym-

pathy will be able to deliver some other political content as well.

We can learn from this example that even a trivial project like a

self-portrait provides starting points for the discussion of socially

relevant issues, in this case: for the motivation to collect personal

data.

Scripts oft the dogs:

3 Examples for "Data and Information" 35

In the Bistro

Level: high school Materials: In the bistro

The example is directly equivalent to the vegetable

store, perhaps for slightly older students. Using

Snap! opens up some possibilities, for example, in

animating the sprites. For example, one could move

the limbs in a controlled way on the common object

("attached parts"). Most importantly, using Snap!

even for simple animations eliminates the need to

change tools when working on more complex prob-

lems later. And the role of body language becomes

more than clear. If the conversation shifts to the

realm of irony, for example, then many utterances

will only be properly interpretable against the pic-

torial background. And of course: the story is just

getting started. What happens next? One does not

know!

3 Examples for "Data and Information" 36

Searle's Chinese Room

Level: high school Materials: Chinese room

Searle’s example serves to discuss possible artificial

intelligence. There is a person in a room who does

not know Chinese but has a book that contains rules

in their language for modifying Chinese texts. The

person is given Chinese texts, applies the rules, and

passes the results back to the outside world. 28 Peo-

ple outside the room believe that the person inside

knows Chinese.

The example is topical in view of the discussion about

artificial intelligence. But it is of course also an excel-

lent example of the relationship between infor-

mation and data. The "data-processing system" in-

side understands nothing at all but produces results

that are interpreted by users as manifestations of in-

telligence.

Note: Since I unfortunately do not know Chinese, the

texts in the example shown were translated by a pro-

gram. The results were then copied into the input fields.

28 https://de.wikipedia.org/wiki/Chinesisches_Zimmer

3 Examples for "Data and Information" 37

3.2 Examples for Communication with an Open Question

In this scenario, two human partners who do not know each other communicate with the help of an IT

system. One asks a question, the other helps him with an answer - hopefully to the best of his knowledge

and belief.

Distance Learning Astrophysics

Level: high school Materials: Distance learning

We take advantage of Snap!'s ability to work with

multiple stages and thus manage two projects that

can communicate with each other. A student asks a

question to the distant astrophysicist, who provides

him with material29, which he hopes the student

will be able to infer the answer. In this case, the ma-

terial is some galaxy images. By the question a con-

text is produced, for which the answerer compiles

and transmits data, from which he believes that the

information searched for opens itself to the ques-

tioner from it. The questioner then interprets the

data material as assistance related to his question -

and not as decorative material for the classroom.

The partners communicate via the block to change

the scene and can transmit texts and/or other data

to each other - in analogy to the block broadcast

….

In the case of somewhat more complicated ques-

tions, the data must of course first be compiled,

evaluated, presented, and interpreted before de-

ciding whether the original question can be an-

swered with it (see next example). This can also be

used for communication with the teacher.

The scripts within the projects of the participants

are simple. To be understood is the compilation of

image data for transmission on the part of the as-

tronomer and the inverse generation of images on

the part of the student, the communication be-

tween the scenes. Central is thus the data exchange

between remote partners.

29 From https://en.wikipedia.org/wiki/Galaxy

3 Examples for "Data and Information" 38

The student asks his initial question. Then he

causes the scene to switch to the astrono-

mer's scene.

If he receives an answer, he first looks to see

if it is a list (i.e. data). If this is the case, then

he assembles the galaxy images from the

data and displays them on the projector in

an endless loop. Of course, he has to know

how the data are structured.

If he does not receive a list from the astron-

omer, he displays the astronomer's answer

for 3 seconds and switches back to the as-

tronomer. Thereby he counts through the

dialog steps (step1, step2, …).

3 Examples for "Data and Information" 39

The astronomer wants the student to find the

answer to his question himself. He shows this

step by step by some remarks he transmits to

the student's scene.

Then he generates transferable data from the

galaxy images, i.e. lists of width, height and

pixels of the image, which he combines to the

list data. Then he sends the whole package to

the student.

The proceeding of the astronomer is to be understood only if he takes from the questions of the pupil that

he should be guided as a newcomer to own realizations. Otherwise, he could simply answer with "yes". So,

he doesn't suspect a colleague, journalist researching for an article, wallpaper designer looking for pictures,

... on the other side of the line. This can be true - or not. If it is not true, then the misinterpreted context

can lead to some trouble. Examples of this can easily be found.

3 Examples for "Data and Information" 40

Calculation of the Distances of the red and blue Pixels from the Center of the Galaxy

Level: high school Materials: Distance learning II

We want to continue our astronomy example and en-

able the student to measure the average distances of

the red or blue pixels from the center of the galaxy.

For this, of course, we need a tool that on the one

hand can read and rewrite RGB values at all, and that

then evaluates the processed image data. This is a

typical task for the expert, our astronomer. He writes

two functions, which select and amplify the "predom-

inantly" red or blue pixels from a galaxy image and

then calculate the average distances of the red or

blue pixels to the center of the image, i.e. approxi-

mately to the center of the galaxy. He sends these

functions "by mail", i.e. via file export and import to

the student.30

One can disagree on what one means by "predomi-

nantly" red or blue. The version of our astronomer for

maximize red and blue is:

If the red value (item 1) of a pixel is both greater than

the green value (item 2) and the blue value (item 3)

(including a factor), then return a pixel in full red, cor-

respondingly a blue pixel, and otherwise white.

One of the higher functions of Snap! (map ... over

...) is used in precompiled form. The result is thus de-

termined very quickly.

The function calculate red and blue mean dis-

tances ... first determines some initial values as well

as the image dimensions and the pixels of the image.

Then it calculates the distances to the center for all

pixels of the image. It returns as result a list with the

two mean values.

The astronomer transmits these two functions to the

student "by mail".

30 Because Snap! currently cannot exchange scripts directly between scenes.

3 Examples for "Data and Information" 41

After receiving the mail, our student asks the pro-

jector to apply the two operations to all galaxy im-

ages and to display the results. This is what he does.

So far, the informatics part.

If we remember that the astronomer sent the pictures with the small additional tip as an answer to the

question about the old stars, then this question was not answered so far. The student has indeed found

out, first by eye, then confirmed by a small program, that there are more red than blue shining stars inside

the galaxies - but he didn't want to know that. He can now react to the situation in (at least) two ways:

either he thinks the astronomer is an incompetent teacher who does not take him and his questions seri-

ously, and leaves the distance learning program in a huff, or he trusts the astronomer and concludes that

the old stars are the red ones. But this additional conclusion has only partly to do with the transmitted data,

facts about it are completely missing. It results essentially from the context and the situation of the involved

persons.

3 Examples for "Data and Information" 42

Weizenbaum's Eliza31

Level: high school Materials: Eliza

The famous example describes the communication

between psychiatrist and patient, where (in this

case) both randomly spout platitudes. The coordi-

nation of the "conversation" happens again by cor-

responding messages.

Besides the playful character of the example, the information content of the messages is also interesting.

Patient and doctor do not react to each other at all in terms of content, but they send data at the right time.

So, what is the transmitted information? If anything, the patient learns that someone is there to talk to.

Maybe that helps him. But this information is not represented by the transmitted data, but by the presence

of data (garbage). The data itself is irrelevant. Or, to put it another way: any data can be transmitted, be-

cause it are not they that carry the information, but the context that gives them all the same meaning.

31 https://de.wikipedia.org/wiki/ELIZA

3 Examples for "Data and Information" 43

Reporter to determine random responses of psychiatrist and patient:

3 Examples for "Data and Information" 44

3.2 Examples for Communication with a Clear Question

In this scenario, a human partner communicates with an IT system. If he wants to have appropriate an-

swers, then he must formulate his questions accordingly.

The Knowledge Society

Level: high school

Materials: Results of the research 32

We often hear that it is no longer necessary to

acquire knowledge because it is "on the net"

and can be accessed at any time.

Is that right?

As always, we take an experimental approach

and try to find out about a non-trivial concept:

the South. The answer is the "most relevant" of

the 47,400,000 results. The usual Wikipedia en-

tries are supplied, e.g. on the book by Borges

("El Sur"), on television programs, films and the

cardinal direction, as well as references to

travel literature - and to other books on the

subject. We don't find much more on the fol-

lowing pages either. So, we have to conclude

that "the south" is to be understood geograph-

ically alone - or we have to bite the bitter apple and read real books. There seem to be a few of them

according to Google's opinion. If we reject this evil suggestion, then we are left with the geographical South.

References to the South as a metaphor, social or economic phenomenon, narrative element, place of long-

ing, literary category, theme of visual art, etc. are missing, and we won't even miss them unless we knew

they existed.

We can find facts "on the Net": the population of Hamburg or the gross national product of Burkina Faso,

the recipe for Frutti di Mare or for repairing the vacuum cleaner. Information can be gained from these

facts if we evaluate and classify them appropriately. But what do we "classify"? Only existing knowledge

comes into question for this, knowledge that exists in the mind, and that must first be acquired before "the

network" can be used appropriately.

If we ask for the results of such ordering processes, i.e. the evaluated data, then we naturally also receive

answers: the opinions of others. But we can only evaluate these opinions, i.e. we can only classify them

ourselves, if we have the corresponding abilities (see above). If these are missing, then other evaluation

criteria remain: that we believe the opinion leaders (or not), that they are sympathetic to us (or not), that

they are like us (or not), that others believe them (or not) ... - if we believe that the others are who they

claim to be (or not). This has little to do with rationality.

32 The screenshots shown are from Google Chrome from 2022/5/1.

3 Examples for "Data and Information" 45

If we know that there are other ways of answer-

ing our questions than those first supplied by the

search engine, then we are off the hook. If we ex-

pand our search for "the South" to include the

term "metaphor", we get a completely different

spectrum of answers - and there are only 200,000

results. What impoverishment! Even "the South

as a space of desire" yields 609 answers that have

almost nothing in common with the previous

ones. Only the combination with the fine arts

yields again some hundred thousand hits. If we

specify our query by using advanced setting op-

tions or already know how to exclude terms, for

example, then the search results slowly come

closer to what we expected from them. Again, ex-

isting knowledge provides access to new

knowledge.

Search engines are not spiteful, they just work "as

intended". If we ask precise questions, they usu-

ally provide precise answers. If we do not ask precise questions, then they need additional criteria to find

"the best" answers. These criteria can be paid rankings, but most often they are "ratings" of the answers by

other users who have asked the same or similar search queries, or other stored data. The rating is known

to take place in the form of a click on the answer line.

This behavior has consequences. No one can sift through the 47,400,000 answers mentioned at the begin-

ning, and even the 609 hits of the longing space are almost unmanageable. So almost all clicks will be on

the first one or two pages of the search results - and thus we have a self-reinforcing process: the most

clicked pages will again be the most clicked, further consolidating their ranking. The others are present, but

practically invisible. "On the net", users will permanently see only pages whose content corresponds to

those that were initially offered to them. New ones will hardly be added. If, for example, the initial search

queries have been filtered by the provider, supplying him with the results of "similar" users who can be

easily found based on his previous use of the system (or, increasingly, "the net" as a whole), then the user

will hardly leave this "information space" again. He simply does not see anything else. On the part of the

provider, this behavior is understandable, because he wants to deliver search results that are highly likely

to be clicked on - only then he will get paid. But the resulting "echo chambers" are politically explosive, for

example, because they divide society into disjunctive groups that are hardly capable of discourse, but also

impoverish the spectrum of "information" that would otherwise be provided.

The result of our considerations is quite clear: "The net" does not contain knowledge, but data. These can

enrich our knowledge if we have the knowledge to use them appropriately, to evaluate them, to classify

them or to discard them. Appropriate education forms the basis for wonderful new possibilities. If it is

missing, we become manipulable objects.

3 Examples for "Data and Information" 46

Access to Databases

Level: from middle school

Tool: SciSnap33

Materials: SQL example

We use one of the libraries of

Snap! (SciSnap!), which among

other things offers the possibility

to access databases. This allows us

to compose the usual database

queries from the associated rela-

tions, attributes, etc. using blocks and have them executed. The result in each case is a list. In the example

shown, we get the participants of basic computer science courses. Quite simple.

Why is it so easy - and for whom? The user must know the SQL syntax and stick to it. Above all, he must

describe the desired data completely unambiguously, there must be no possibility of interpretation. This is

not so easy. However, the evaluation of such queries is then easy for the machines, they have been able to

do that for years.

Our user describes with his request the data he wants to receive from the system. He usually does not know

exactly which data he will receive, but he knows their meaning. He knows them, not the machine. The

machine cannot know them at all because it cannot know which meaning the user gives to these data,

which information he will take from them. The list of our students, for example, can mean many things:

maybe they have to be excused from the rest of the day's classes because of a field trip, maybe they check

which small courses can be cancelled, maybe they check if the books are enough for the course. One does

not know ...

SQL queries are easy for machines to evaluate because they provide a clear basis for decision-making: Data

either belongs to the requested category - or not. It gets interesting when questions are asked that do not

provide a clear basis for decision-making. Should such fuzzy questions as "Are boys (or girls) disadvantaged

at school?", "Do urban children (rural children, children from middle-class homes, members of sports clubs,

kindergarten children, children with a migration background, ...) have it easier (harder) at school?" "Is the

evaluation of different competencies at school fair?", "Who is the best teacher?" are answered with the help

of (e.g.) SQL queries, then a reformulation and thus an interpretation must inevitably take place, which

leads to answers for which it is at least questionable whether they answer the original question or just the

interpretation. There is always an answer when a query has been formulated, even if the original question

cannot be answered based on the data.

33 SciSnap! is a Snap! -library.

3 Examples for "Data and Information" 47

ACCESS to JSON34-Data

Level: high school

Materials: JSON example

 stations.json (contains the data of bicycle rental stations in New York)

stationsshort.json (shortened version of the file)

JSON is a string data structure that is stored as a file. Snap! can import such files

and convert them into a nested list, as well as convert lists into JSON format and

export them again using the <length> of <list> block, if necessary. So, we load the

JSON data on our computer and import it directly into a variable we created before.

It is even easier if we simply drag the JSON file onto the Snap! window. In this case,

a variable is created with the file name and filled with the file contents.

In the project, current and freely accessible data that have been saved as JSON files

are to be evaluated. To do this, the learners must first research what JSON is, what structure the files have,

what data types can be represented in them. As an example we choose the data of the bicycle rental sta-

tions in New York, which are available in a file stations.json.35 In this case, the target of the transformation

is a structure that contains either an atomic quantity (logical value, number, string, ...) or a list that consists

of atomic quantities and/or partial lists that contain the type of the original data (list or dictionary) as the

first entry. In dictionaries, two-element lists with key/value pairs follow as further elements.

In our case the result of the data import looks a bit disappointing:

We therefore take a closer look at the second element of the sec-

ond line of the list - there seems to be something hidden.

34 JavaScript Object Notation
35 https://catalog.data.gov/dataset/citi-bike-live-station-feed-json-d1c27

3 Examples for "Data and Information" 48

This already looks more interesting. Let's see what the first line contains:

So, these are the station data we are looking for. We

therefore store these elements in a new variable.

From this data, a table is now to be created that contains only the columns Station name, Status and Avail-

able bikes.

If the data are available in list form, as is the case here, then their relevant part can easily be extracted and

evaluated - but what is "relevant" in this case? Of course, this depends on what is to be done with the data,

what information is sought. If we are interested in the number of available bicycles during the week, then

the evaluation will be different than if we want to show the distribution of bicycles over the city in a city

map. And maybe we are just looking for a free bike near the hotel.

And couldn't we have just left the whole thing to an SQL query? We would have if the data were present in

an SQL database. But in this case, they are not. So instead of giving an exact SQL description of the data we

are looking for and leaving its evaluation to the SQL server, we take action in this case by formulating the

exact description algorithmically. The result is the same. In any case, it is up to the human user to describe

his or her wishes so precisely that the machine receives a unique sequence of instructions that it needs to

compile the answer.

3 Examples for "Data and Information" 49

3.4 Communication without Human Partners

For this scenario, we need examples where data is collected by one system, transmitted to another, which

may well be running in the same computer, and evaluated there. The results of this evaluation are dis-

cussed.

License Plate Detection

Level: from middle school Materials: License plate detection

We want to deal with the wide field of character

recognition, i.e. extracting text from an image. As

an example, we choose license plate recognition, as

it is practiced e.g. in the toll barriers at highways.

We choose here the simple case, suitable for the intermediate level, that we are only interested in the

nationalities of the vehicles. 36 Thus, we only need to recognize the characters in the blue area of the Euro-

pean license plate. Images for such tasks can be generated quickly and easily on the Internet.37

We choose a very simple approach and hope that the numbers of pixels to represent these symbols differ.

This reduces the problem to the task of finding the blue area and counting the non-blue pixels in it. To be

independent of the size of the representation, we compare the pixels in the upper area ("Euro stars") with

those in the lower one. For simplicity, we work with global variables to transport data between the different

blocks.

First of all, we generate some license plates of dif-

ferent nationalities, import them as costumes and

write some methods that solve the subtasks.

We have to find at least the blue area in the license

plate. We have already done something similar with

the galaxy images, for example. With the RGB limits

we have to experiment a bit, then it works fine.

Since an image has quite a lot of pixels, we work

with the compiled version of map...over. Then the

recognition is very fast.

So far, we have the following partial result.

36 We can find a more detailed example on http://snapextensions.uni-goettingen.de/beispielsupermarkt.pdf.
There, in addition to character recognition, simple approaches to face recognition, etc. are also implemented.
37 For example, you can simply search the keyword "license plate".

http://snapextensions.uni-goettingen.de/beispielsupermarkt.pdf

3 Examples for "Data and Information" 50

The boundaries of the blue area can be easily found

if we search it starting from the left or right, top and

bottom. For clarity we mark the examined pixels in

red. The corresponding script is simple.

After that the borders of the blue area are known

as global variable leftX, rightX, upperY and

lowerY. In this area we can now count the inner

non-blue pixels, here separated into upper EURO-

and lower national-area.

We receive as a total script for the recognition of

the nationality of EURO license plates:

3 Examples for "Data and Information" 51

With these results, we can now investigate, on the

one hand, whether the initial solution approach

was useful at all, and if so, from which country the

license plate under investigation originated.

So much for the "technical" part. We can now easily imagine that the remaining part of a license plate can

also be determined with a little effort. The result of this process is then transmitted to another location and

evaluated there. This can be toll booths, police computers, We will first deal with the rather "uncritical"

case of a toll station.

Our license plate reader therefore reads license plates and transmits the result to the control center - as

data, e.g. "ABC DE 123". This data is evaluated there by the running program, as if it were information. In

this case, it is assumed, for example, that the vehicle with the specified license plate number is on the

Brenner freeway. If the relevant conditions are met, then the toll can be debited from the car owner's

account. What happens if the owner objects to the debit because he allegedly did not drive over the Bren-

ner, but was swimming at the Kochel lake? Human eyes for both are not found, only "the computer" thinks

to have identified the license plate on a picture. Is this case justiciable? Probably not, because computers

are not recognized as witnesses. Probably, in this case, the original image that the computer evaluated will

also have been stored, so that human experts can check whether the machine was mistaken. However, it

is easy to give scenarios where this verification does not take place or is not even possible, e.g., because

the person concerned does not know about his "identification". The movement data of a cell phone may

serve as an example, for which there are very different interested parties.

So, even in this case, the data transmitted by the image analysis has little to do with the information that is

derived from it. If this interpretation is outsourced to machines, then we quickly arrive at scenarios that are

to be located in the area of "computer science and society".

3 Examples for "Data and Information" 52

Streaming

Level: from middle school

Materials: Streaming

We use a project with two scenes,

one serving as the room where Susi

wants to listen to music, and the

other as the server room of the

streaming service provider. On the

server side, we maintain a list of cus-

tomer data that allows logging in and

perform billing (not realized in the

example) that depends on the usage

time. If the user account is empty,

then the connection is shut down.

On the client side there is Susi and

her laptop. The laptop establishes

the connection when the power but-

ton is pressed and terminates it

when the button is clicked a second

time.

Of course, the students have to set up the accounting system on the server side first. However, their main

problem should be to establish a secure connection between the server and the client, where the transmit-

ted data cannot be read. Since there are very different solutions for this, this is a highly differentiating task.

We implement the solution here very simply without encryption via messages and scene changes. The lap-

top is responsible for establishing the connection, for example. It does this via scene changes to which it

attaches a message (as a list).

3 Examples for "Data and Information" 53

The button on the laptop simply controls switching on and off.

And Susi? She doesn't really do anything - except change costumes.

She doesn't want to do anything; she wants to chill!

The streaming server receives a message in the

form of a list when the scene changes. The first en-

try contains either the user data, which is then eval-

uated by the server, or the request to stop stream-

ing. And initially it sets up a list with customer data.

As you can see, the previous scripts are trivial. How-

ever, the solution can be greatly extended in very

different ways.

The data transmitted during the LogIn process

should contain the information that the user (in this

case) is Susi. Obviously, this information may or

may not be correct. So, the data alone does not de-

termine the information content, but the whole

context is important, e.g. its security aspect, on

which depends how far the data is to be trusted.

3 Examples for "Data and Information" 54

Zero Knowledge Authentication

Level: high school Materials: Zero knowledge protocol

The idea of the zero-knowledge protocol38 is that a prover ("Bert") has to prove to a verifier ("Vera") that

he has certain information (the key) without the prover communicating this key over the network. For this

purpose, Vera poses tasks to the prover, the solution of which can only be guessed with a certain probability

p. The verifier has to prove that the verifier has the key. If p = 0.5 and the number of questions n = 10,

then this question chain could only be answered correctly by guessing with a probability of (0.5)10 =

0.00097.. If we choose n higher, then the answering system can be authenticated with virtually any degree

of certainty. We choose a simple version of the Fiat-Shamir protocol, which runs as follows:

Presupposition:

Bert determines a large number n as the product of two large

prime numbers: n = p*q. Then he chooses a number s which is

partially alien to n and calculates v = s2 mod n. He publishes n

and v. In our case, this is done by assigning values to two global

variables.

38 https://de.wikipedia.org/wiki/Fiat-Shamir-Protokoll

3 Examples for "Data and Information" 55

For authentication, the following steps are then run through several times:

1. Bert determines a random number r and sends x = r2 mod n to

Vera.

2. Vera remembers x, determines a random bit e (0 or 1) and sends it to Bert.

3. Bert calculates y = r*se mod n and sends y to Vera.

4. Vera checks if y2 mod n = x*ve mod n and

reports the success or failure.

In this case, too, data is transmitted between the communication partners. However, their content does

not result from the transmitted values, but from their coherence within the framework of the protocol,

which goes beyond the pure exchange of data. Thus, it is not about the data itself, but about its property

of being "correct".

4 Simple Examples 56

4 Simple Examples

The following examples each demonstrate a few aspects of Snap!. They are quick to implement and should

encourage modifications and extensions. Above all, they show how easy visualization is in Snap!.

4.1 A Lawn Mower

Level: from middle school Materials: Lawnmower

We provide the stage with the costume of a lawn

with a gray border, so we turn it into a modern lava

stone garden. For the sprite, we draw a lawn mow-

ing robot as a new costume. The robot is supposed

to mow the lawn, and it can do that in very differ-

ent ways. We realize a simple one that runs only

randomly. The robot overwrites the lawn back-

ground with the light green color of a freshly

mowed lawn.

Nevertheless, the task is not trivial. For example, is

the lawn always completely mowed on the inside?

What about the not mowed strip at the edge? Are

there more suitable robot movements for mowing?

Which one does it the fastest? Is it possible to install

a timing system? Where is the robot's charging sta-

tion and when should it approach it? What happens

to the plants in the lawn, e.g. spring tulips? Will the

lawn grow back?

It can get as complicated as you like - and there are

very different possible solutions to all questions.

4 Simple Examples 57

4.2 In the Aquarium

Level: from middle school Materials: Aquarium

We will look for a nice background image for the

stage (or draw one) and import it as the costume

of the stage. Then we create two sprites using the

button in Sprite-Coral and name them Mathilda

and Joe - whatever else. For each of them we draw

a fish costume.

Mathilda has little interest in other fish and swims

around the aquarium independently of them. If she

meets a wall, then she turns back.

Joe is more interested in Mathilda than the rest of

the aquarium. He constantly looks in her direction

and swims towards her. If he gets too close to her,

he carefully keeps his distance. He has his own ex-

periences.

We can very easily create more fish, forming a chain

altogether, as can sometimes be observed in large

marine aquariums. The introduction of a shark is

also simple. It swims towards other fish, but if it

gets too close to them, then they quickly run away.

More demanding is a real schooling, where many fish build a common structure. The strategies for this can

be found in the net39 and are also well realizable.

39 e. g. in https://de.wikipedia.org/wiki/Schwarmverhalten

4 Simple Examples 58

4.3 The Sun System40

Level: high school Materials: Solar system

If there is a sun of mass M in the origin of the coor-

dinate system, the gravitational force on a planet

of mass m is �⃗⃗� = −𝐺 ∙
𝑚∙𝑀

𝑟3 ∙ �⃗� , so �⃗⃗� = −𝐺 ∙
𝑀

𝑟3 ∙ �⃗� .

The value of the local sun variable M is obtained by

other sprites using the ... of ... block (see figure).

We get an image of the sun and some planet im-

ages from the web and scale them down a lot. Then

we load them as costumes into a planet prototype

sprite called Earth. A second sprite called Sun

clears the screen and starts the simulation. Other

planets are created by cloning Earth.

Our Earth has a set of local variables that describe

its state. These include the velocity components vx

and vy, the acceleration components ax and ay,

and the distance from the sun r. The velocity values

are each set appropriately at the start of the simu-

lation by clicking the green flag.

The Sun clears the screen, sets its mass, and shows

itself in the center. Then it waits for a moment so

that the planets have enough time with the self-initialization and starts the

simulation by sending the message "go!". After that the Sun stops its activity.

The planets react to the message by measuring their current distance to the

sun. Then calculate the acceleration components ax and ay. These change the

corresponding velocity components vx and vy, and from this the new planet

position can be calculated. These processes are repeated continuously and re-

sult in the planetary orbits. All values were chosen in such a way that the or-

bital curves fit at least partially on the screen.

40 In a rather simplified version: the sun is nailed to the center and the planets do not influence each other.

4 Simple Examples 59

4.4 Caesar-Encryption

Level: from middle school

Materials: Caesar encryption

We want to encrypt and decrypt simple

strings using the Caesar method. Since

this is hardcore computer science, we

need a very serious, somewhat boring

interface with a few buttons on it. We

import these from the Costumes library using the File menu.41

We export the button image to a file. Using a graphics program,

we stretch it a bit and label it differently. We import the resulting

costumes again.

We create three new empty blocks named text input, encryption

and decryption and make our buttons react by calling one of

these blocks when clicked. To do this, we copy the button twice

using the context menu in the sprite area and change the cos-

tumes and called blocks accordingly. We drag the buttons to the

right place, change their names to bTextinput, for example, and

uncheck the draggable box. Now the button is fixed.

Then we create four global variables called original text, cipher-

text, decrypted text, and key, as well as a new sprite called Con-

trol, which makes for a very serious interface. To do this, it writes

some text on the stage. We display the four variables on the

screen with monitors (put a check mark in front of the variable

names) and switch to the large display using the context menus

in the display area. Then we drag them to suitable places behind

the texts.

Lastly, we enable the change of the key with the help of key-

strokes.

41 As you can see, there are also far more "interesting" costumes in the library!

4 Simple Examples 60

With this, our "user interface" is

ready.

We now come to the actual functionality, which can be developed inde-

pendently. The text input is simple: we just ask for the original text. The

output can also be made more beautiful in the process.

Caesar encryption consists of shifting all characters in the code (here: in Unicode) by the key length. The

last characters are shifted cyclically to the front. In the script below, this is done very verbosely, but - hope-

fully - readable. Note that the green length of text <string> block from the Operators palette works with

strings, while the brown <length> of <list> version from the Variables palette works with lists.

Decryption is performed directly inverse to encryption.

4 Simple Examples 61

4.5 Color Mixer

Level: from middle school Materials: Color mixer

We want to create and display mixed colors from

the primary colors red, green and blue in the usual

way. For this we have to know that colors in the

RGB model are represented by 4-element lists,

which contain the three color values and addition-

ally the "transparency" of the mixed colors, i.e.

their opacity. All four values come from the num-

ber range 0 to 255, so each can be stored by one

byte. If the pen is to draw in full red, then this is

achieved by the adjacent block.

So, we create three variables with the identifiers red, green and blue, display them

on the stage (place a check mark in front of the variable name) and place them in a

suitable position. Then we select the slider item from their context menus so that a

slider appears below the variable value, and then set the value for slider max to 255.

This allows us to select the desired color values simply by moving the slider.

After these preparations we can have an appropriately colored

square drawn under the red variable, and with slightly changed

coordinates also the green and the blue. And of course, as the

crowning glory of the project, a larger rectangle with the mixed

color belongs over everything.

The drawing process is started by clicking on a drawing pen, to

which we also assign a suitable costume for this purpose.

If we work together on the basic framework of this project, which

includes a red rectangle and the reaction to the pen's OnClick

event, then the missing three color areas can be created by the

learners themselves in direct analogy. And of course, there is

room for improvement:

• The colors should change immediately when a color value is

changed, not when the pen is clicked.

• The help is also kept very sparse. This can be done better!

• From physics lessons you know color circles, possibly with dif-

ferent transparency, which show the mixed colors. Is this also

possible in Snap!?

• Are there other color models than the RGB model? Which

ones? How do they work?

4 Simple Examples 62

4.6 Tasks

1. a: Find out about XOR encryption. Implement the procedure.

 b: Find out about offset procedures for encryption. Implement such a procedure.

 c: Learn about cryptanalysis. Implement a frequency analysis.

2. In the camel problem, the animal gets into a terrible situation be-

tween three pyramids. It moves purposefully towards a randomly

selected pyramid. When it has covered exactly half the distance to

the pyramid, a spiteful desert ghost comes and whirls the poor

creature around so that it no longer knows which pyramid it was

heading for. The movement, of course, leaves an imprint on the

screen, and the procedure starts all over again.

3. The goat problem pops up in the media every now and then. It goes

like this: In a lottery, there are three doors, behind two of which is

a goat, and behind the third is the main prize. The game master,

who knows the positions, asks the player to guess one door. Then

he opens one of the remaining doors, behind which there is a goat,

and offers the player to change his mind - or not. The question is:

should the do that? Realize the game and decide the question em-

pirically.

4. a: Desert ants live alone in the desert. When they leave the burrow,

they search the surrounding area for something to eat. When they

have found it, they run directly back to the burrow. Obviously they

remember which movements they have made in total. From these

they "calculate" the direct way back. Realize the procedure.

 b: On their way to the burrow, the ants should leave a pheromone

trail that slowly evaporates. On this trail they find their way back

to the prey, get another piece and run back to the burrow, leaving

a new pheromone trail. If they have found nothing more, they

leave no new trail.

5 Simulation of a Spring Pendulum 63

5 Simulation of a Spring Pendulum

Level: high school Materials: Spring pendulum

In addition to the extensive freedom from syntax, the excellent visualization possibilities and the good-

natured behavior of Snap! in case of errors are an incentive for the learners to proceed experimentally and

thus to try out their own ideas. An experimental approach opens up possibilities for independent problem

solving instead of reproducing predefined results, especially at the beginning.

In the area of simulation, to which we can also count many of the usual games, we find enough simple, but

not trivial problems, which can already be worked on by beginners with a little good will. Experimental work

of course requires an interest in developing own ideas. So, we need problems that generate enough moti-

vation. As an example, we choose the simulation of a simple spring pendulum, which is suspended from a

periodically oscillating exciter. I know that an example from physics is not very motivating for all learners -

rather the opposite. But I do not give up hope!

Organization of Cooperation

If groups work largely independently of each other, it must be clear on the one hand in which framework

work is done, and on the other hand how the results can be compiled later.

To create a frame, you can create empty blocks with the right names as "dummies". These can be used

immediately in scripts, still without the functionality sought. The required objects can also be created and

given rudimentary behavior, such as responding to events: For example, you can output a speech bubble

with an explanatory text: "Now actually this and this should happen!" This program frame can be exported

or imported as a whole or in parts:

• The project can be exported with all its parts using the File menu. It will then ap-

pear at the bottom of the Snap! window. Clicking the arrow to the right of it will

take you to the download folder where it was saved. From there it can be sent,

imported (see picture) or dragged into any Snap! window and opened again.

• If there are global methods (blocks "for all sprites") in the project, then another

item "Export blocks..." appears in the same menu. If this is clicked, then the blocks

to be exported can be selected in the window that appears. The additional blocks

used in these blocks are automatically added, so that they are available again when

the new blocks are imported. The saved blocks can be dragged into open Snap!

windows, imported or sent like projects.

• Sprites can be exported as a whole with their local methods by selecting the "ex-

port..." item in their context menu in the sprite area. The re-import is done as de-

scribed above.

• If images of scripts are saved, then they contain the code of the mapped blocks. If

such an image is imported as a costume, then the mapped blocks can be recreated

with "get blocks" from the context menu of the costume in the script area.

• Within a project, scripts can be transferred from one object to the next by dragging them from the sprite

in which they are located at the script level to the sprite in the sprite area that is to be supplied with the

script. The addressee will be highlighted a bit when "dragged" if it has noticed that it is meant.

5 Simulation of a Spring Pendulum 64

The example of a spring pendulum contains

several parts that work largely inde-

pendently, so that group work with division

of the tasks is almost inevitable.

We identify

• an exciter, the dark plate at the top-left,

which periodically oscillates vertically.

Its frequency is an instance variable

and can be changed in the variable dis-

play.

• a ball hanging relatively stupidly on a thread, but at least it knows the basic equation of mechanics.

• a thread that has to redraw itself again and again so that we don't see any protruding ends on the

screen.

• a pen that records the diagram of the movement.

• a clock for the common time.

The Clock

We create a new sprite and draw a simple clock as its costume. Clicking

on the green flag we choose this costume for the clock and send it to

the right-top corner. After the clock is started using the start message

(green flag clicked), it resets the timer built into Snap! and continuously

remembers the current time in the variable t, which we also display.42

Since the time t logically belongs to the clock, we declare it as a local

variable. Local variable is accessed from other objects via the <attrib-

ute> of <object> block of the Sensing palette. We export the clock

sprite to the Clock.xml file as specified.

Extension: Let the sprite show the time by moving the hands correctly.

The Exciter

We draw a simple rectangle symbolizing a plate suspended somewhere. Since the plate should only oscillate

vertically, it needs a fixed x-coordinate on the screen (here: -200) as well as a zero position in y-direction

(here: 150). Around these it oscillates with a fixed amplitude (here: 10) with a variable angular frequency

(here: 150). In the course of time t, which initially has the value zero, the y-coordinate is then calculated to

be

𝑦 = 150 + 10 ∗ 𝑠𝑖𝑛(𝜔𝑡).

42 Of course, we could have accessed the timer time directly instead. But I want to show access to local varia-
bles from other objects.

5 Simulation of a Spring Pendulum 65

This information can be translated directly into a

script.

The script starts its work when the start message is

sent. Since the scripts of the other parts have to be

started at the same time, this option is suitable.

More interesting are the variables used. The time is imported from the

clock. The frequency is not needed in any other script and therefore

should be declared locally. You can change it using the arrow keys.

We export the sprite as described as Exciter.xml.

Extension: Also have the "laboratory ceiling" drawn against which the

exciter oscillates. Alternatively, a shaft can rotate, which leads to a ver-

tical periodic motion via a deflection roller.

 The Thread

The thread replaces the spring. It has only one property, the spring con-

stant D. This is set once to a fixed value, then a bright vertical line is

drawn at the location of the thread, which deletes its old representation

(of course, this can also be done more elegantly). After that, the current

thread deflection is drawn. We export the object as Thread.xml.

Extension: Instead of the simple thread, draw a spiral spring

 with a constant number of turns that stretches and contracts again.

The Ball

Our knowledge of physics, which can be quite poor,

is "built into" the ball: We know the basic equation

of mechanics F = m*a as well as Hooke's law F =

D*s where s is the deflection from the zero posi-

tion. Furthermore, the acceleration a is known as

velocity change per time unit and the velocity v as

displacement change per time unit. Nothing else.

As local variables we need the quantities to be cal-

culated as well as the mass m. We convert this

knowledge into a sequence of commands: we de-

termine the momentary displacement s, from it F,

from it a, from it v and from it the new position.

We export the ball as Ball.xml.

Extension: Introduce a friction constant R that reduces the speed by a certain (small) percentage. R should

also be interactively changeable within a reasonable range.

5 Simulation of a Spring Pendulum 66

The Pen

The pen has no local variables. It moves slowly from

left to right and moves in y-direction to the y-position

of the ball. Thereby it writes. As a little treat, we add

the function that it starts writing again when it has

reached the right edge.

We export the pen as Pen.xml.

Extension: Introduce a way for the pen to run at dif-

ferent speeds.

Why is this a simulation?

Our example contains some basic physics, but there is nothing about resonance, beat etc. in it. Neverthe-

less, they appear in the simulation. We check with the program whether the consequences „necessary from

thinking” (acc. to Heinrich Hertz) of the basic knowledge agree with the observations in the experiment,

whether our conceptions of the physical relations thus result in the observed behavior. We simulate a sys-

tem to check our ideas. As a tool for this, instead of mathematics, we use an algorithm that tracks the

system behavior over a sequence of small temporal changes. So instead of integrating "mathematically,"

we iterate "informatically." Except in the simple cases, a tool for integrating a differential equation system

does nothing else either.

Something completely different is an animation into which the observed behavior is programmed. Here no

new phenomena can arise because everything is known. Animations represent something, simulations can

lead to real surprises.

6 Troubleshooting in Snap! 67

6 Troubleshooting in Snap!

Level: high school Materials: Towers of Hanoi

Snap! visualizes the program flow without requiring any special activities from the learners. This alone

makes many errors "visible" that would otherwise require tedious analysis of code to find. For example, if

a body moves in the wrong direction, then it is pretty clear what to look for.

Since global and local variables can be displayed in a monitor on stage by

setting the checkmarks in front of the variable name, their change is also

directly observable. Script variables can be displayed in the same way if the

blocks show variable <name> or hide variable <name> are included in

the script. An important aspect of troubleshooting is the "freezing" of vari-

able assignments when the program is stopped: if the program is inter-

rupted or terminated, the current values of the variables are retained and

can be inspected.

Control output during program run can be easily achieved with the blocks of the Looks palette: say

<something> for <n> secs and its relatives also allow the output of more complex expressions so that

those can be followed on the screen. The wait <n> secs and wait until <condition> blocks allow pauses

in the program flow at certain points and/or when certain conditions occur.

If the sequence of the entire program is to be followed step by step, then the Visible Stepping

must be switched on at the top next to the output window.

After that, the footsteps appear in light green, and a slider appears next to them that determines the step-

ping speed. A button for interrupting or starting stepping appears between the green flag and the red stop

button. If the speed slider is on the far left, then the program can be stepped through in single steps. The

currently executed block appears in light green.

If the program flow is to be followed also within the own blocks, then

these must be opened before the start of the program in the editor. The

blocks can also be nested.

6 Troubleshooting in Snap! 68

We want to follow the processes by means of a small example. For whatever

reason - the problem of the "Towers of Hanoi" is to be processed. For this we

draw a disk and assign this costume to a sprite Disk. Further disks are to be

created by cloning. For this we wrote a method create <n> discs - but it

doesn't work. Too bad!

To locate the error, we open the method in the ed-

itor, click the Visible Stepping button, set the de-

sired speed, and then click the new block again. In

the editor we can follow how the commands are

called - and where it goes wrong.

Something is missing! We add the missing list variable stackA in the block, and this part at least runs fine.

Further blocks that can be helpful for troubleshoot-

ing can be found in the libraries. They are described

by their own help pages, which are called via their

context menus.

However, the - for me - most essential possibility

for troubleshooting is to take blocks out of the

scripts and "just leave them" next to them. If a

script works afterwards, the blocks can be inserted

again one after the other. Mostly the error can be

narrowed down quickly in this way.

7 Lists and Related Structures 69

7 Lists and Related Structures

Snap! knows beside atomic data types like numbers, logical values and

characters the structured types string and list. The strings follow later be-

cause they allow many special applications. In this section we will first discuss

lists, which are practically always needed. From them all higher structures can

be built easily. The use of lists will first be shown in a simple case - sorting -

followed by more complex applications.

Lists are so-called references, i.e. addresses that "point" to a certain memory

area where the actual data is located. If this is not taken into account, annoy-

ing errors can occur. For example, several list variables can point to the same

data area. If, for example, you change this data by accessing it via a list varia-

ble, the changes also affect the other variables, as long as they refer to the

same data. Such errors can be avoided, for example, by creating copies of the

lists. Then we can work with them without interfering with the remaining op-

erations.

7.1 Sorting with Lists - by Selection

Level: from middle school Materials: Selection sort

The example is kept extremely simple: it uses only global variables and blocks without parameters, i.e. mac-

ros that serve to summarize a command sequence under a new name. Since it additionally exploits the

visualization possibilities of Snap! it is well suited as an introductory example.

We start with an empty Snap! project. If we want to sort something, then the elements to be sorted have

to be stored somewhere. For this purpose, there are variables, which can be thought of as "boxes" that can

hold any content. For the storage of several elements there are lists, a kind of "box series". The blocks for

editing variables and lists can be found in the Variables palette in brown.

By the way: The magnifying glass for searching in the top-right corner of the

palettes shows us candidates for blocks that match the search pattern. Among

them we also find blocks written by ourselves and some that are not in the

palettes at all.

So, we create a variable called unsorted numbers and assign an empty

list to it. (Using the arrow keys in the list block, we could also specify

initial values in the free spaces that would be created. The type of the

inserted variables does not matter: lists can hold anything, and in any

order). If the variable is created, it appears as a watcher on the stage.

There we can choose different display formats in the context menu or

position the list as a dialog arbitrarily in the Snap! window.

7 Lists and Related Structures 70

In the same way we create a second list of sorted

numbers, which will later contain the sorted data.

First of all, we need unsorted data - as usual ran-

dom numbers. We create them with a small script,

where the number of numbers results from the

number of repetitions in the loop.

We try the script several times - we always get a

new list of numbers. Great! Full of pride we form a

new block called generate new numbers. (Right

click on the script layer.) In this one we simply ap-

pend our script to the "hat" with the block name.

Done - we have written a new command! We can

find it at the bottom of the Variables palette - if we

have not specified anything else.

From this list of numbers, we now want to pick out

the smallest number. Let's assume that the first

number is already the smallest. Then we look at all

the following numbers. If one is smaller than the

previous smallest number, we remember it. If we

are through, then we "report" the result - we write

a function get smallest number.

That also works fine. But only once because we

can't find the next smallest number this way. This is

only possible if we remove the smallest number

from the list each time. Because we only know

which was the smallest number after the entire run,

we remember its value as well as its place - and

throw it out after the run through the list.

Sorting a list is now quite simple: we take the small-

est number from the unsorted list one by one and

put it into the sorted one. That's it. We wrap the

script again in a new block, which we call selection

sort.

7 Lists and Related Structures 71

7.2 Sorting with Lists - Quicksort

Level: high school Materials: Quicksort

As a second, recursive, example we want to implement

Quicksort43 in the same environment as above. For this we

first write a more elegant method for generating new

numbers, which uses a parameter and local script varia-

ble. With this we can specify how many numbers we want

to have. To be able to handle larger sets of numbers, we

wrap everything in a warp block.

Quicksort is started by specifying the list to be sorted.

The actual work is done in the block devide and arrange

the list <l> between <left> and <right>. As pivot ele-

ment we select there the middle of the respective sub-list.

We can sort 10,000 random numbers with it in

about 2 seconds.

43 The procedure can be found in various versions on the Internet, e.g. at http://de.wikipedia.org/wiki/Quick-
sort. Here, an in-place implementation was chosen.

7 Lists and Related Structures 72

7.3 Shortest paths with the Dijkstra method

Level: high school Materials: Dijkstra routing

Let a graph be given by an adjacency list. In this

list all nodes of the graph are listed, from each of

which lists "go out", in which the neighboring

nodes with the respective distances are entered:

i.e. those nodes to which a direct connection exists.

As examples a very simple graph and its adjacency

list are given.

To work on the problem we need a specialist, of

course: we draw Mr. D. He must be able to gener-

ate the adjacency list of a given graph. We simply

draw the graph on the background - here done very

tastefully.

We create the list statically by inserting the appro-

priate elements into a local list, which we return as

the result of the operation.

The global variable adjacencyList then receives

these values via a simple assignment.

A B C

E D

3

2

4

1
5

7

A

D

C

B

E

B 3 D 2

A 3 C 4 D 1

B 4 E 5 D 7

A 2 C 7 B 1

C 5

7 Lists and Related Structures 73

For further processing we need three other lists: the list of openTuples takes tuples containing the name

of the node, its total distance from the start node and the name of the predecessor node; the list distances

takes tuples containing the name of the node and its total distance from the start node, it is re-sorted for

new entries so that the node with the shortest distance from the start is in front; the list finishedNodes

contains the names of the nodes that have already been finished.

We summarize the setup of these lists for the start in a method

initialization, which is also passed the name of the start node.

After its call the following picture results.

The path search is relatively simple in this

version, because most of the "intelligence"

was put into the handling of the lists. This is

done in the method perform one step.

For the tuple currentTuple with the

smallest distance, the new distances are

calculated for the neighboring nodes.

Then the node is marked as edited and

all unedited neighbors with new total

distance and predecessor nodes are en-

tered into openTupels.

This list is sorted by distance and tuples

with larger distances are deleted.

Except for the three auxiliary methods, the routing is now com-

plete:

7 Lists and Related Structures 74

We have seen above how to sort. Here it is done by selecting the smallest.

the sortedTuples list takes in the sorted tuples

Assumption that the smallest distance is at the very

front.

find even smaller distances if necessary

add the tuple with the smallest distance to sortedTu-

ples and delete it in openTuples

lastly copy back the sorted list

Now, for each node, the tuple with the smallest dis-

tance is at the front of the list. If there are other tu-

ples for this node, they are deleted. Then we only

have to find the distance to the searched node from

the distances list and let Mr. D. display it.

The distance is 10

7 Lists and Related Structures 75

7.4 Matrices and own Loops

Level: high school Materials: Matrices

If we have lists with direct access to each element, then we don't really need special arrays, stacks, queues,

etc. All higher data structures can be built from lists. Nevertheless, we will build the data structure matrix,

because it is traditionally used e.g. for adjacency matrices. (Attention: for the sake of brevity, we will omit

all security checks!)

We package a matrix in a list, of course. For this we declare (arbitrarily) the following list structure:

[[list with sizes of the index ranges] [list with Data………]]

The dimension of the matrix then results directly from the entries of the first partial list. A two-dimensional

array with two values per row would have the following structure: [[2,3] [1,2,3,4,5,6]]

We create a two-dimensional matrix of size a x b by generating

the two desired lists. The first one contains the two passed pa-

rameters, the second one should be marked as empty, e.g. by a

minus sign for each element. We return the result. We use global

methods, which we assign to the Variables palette. The syntax

can be chosen completely freely, for example also with brackets,

if you like that.

Now we write values into the matrix with set, nice

and clear. We calculate the position of the place to

be changed using the dimensions. Then we over-

write the corresponding entry.

To read matrix entries, use the method get.

In many programming languages the

for-loop is the common tool to step

through matrices. In Snap! we can

find something like this in the Control

palette, but we can also write such a

control structure ourselves, e.g. to

provide it with a step size. For this we

create a new block for <variable>

from <start> to <end> step <step>

do <script> and take a closer look at

the nature of the parameters.

7 Lists and Related Structures 76

We mark the index variable i as upvar. This allows its

name to be changed "externally", although its internal

name remains the same - i.e. i.

start, end and step are normal numerical parameters.

We mark the script as a C-shaped command. Thus, it

is considered as a command sequence which is passed

to the block unchanged, i.e. not evaluated.

C-shaped ensures that the block has the usual ap-

pearance of Snap! commands, where the sequence of

commands to be executed is inserted into the "mouth"

of the C.

Using this type of loop, we can quickly fill a matrix with

random numbers.

Finally, we want to display the matrix "properly" on the

screen, i.e. in the usual two-dimensional table form. To

do this, we create a list that is filled with sub-lists, the

rows of the matrix, that contain the table data. This list

is then displayed and can then be moved anywhere

with open in dialog... from its context menu.

7 Lists and Related Structures 77

7.5 Higher Level List Operations

In the Variables palette we find some fast blocks that allow more

complex operations even on large lists. The most important of

them is the map ... over... block. It applies a script located in the

gray ring to all elements of a list in order and returns the results as

a new list. In the default case, the current list element is inserted

into a placeholder left empty in the script. If you want to make it

more readable, then you assign a name for the element and use

that in the script. If you need the index of the list element, you get

that in the field after the element name. After that you will find a

reference to the complete list.

As an example, let's create a copy of a list. The first

list should simply consist of the first 100,000 natural

numbers.

From this list we can now create copies in different

ways. In the simplest case, by using the

map...over... function directly. But

we can also name the old list element

and return it under the name, and we

can also do this explicitly using the re-

port block.

Of course, we can also use one of these versions within a new

block for copying simple lists.

And if you remember that lists can also contain fur-

ther sub-lists, then of course these must also be cop-

ied separately in the case of a copy - nicely recursive.

In some cases, you may want to take advantage of the speed of the map...over... block to search a list. As

an example, we want to find the largest element of a list. Since the map...over... block must return a new

list element for each element, we cannot simply get the largest element we are looking for as a result.

Instead, we run through the list and determine the largest element separately as a side effect. We ignore

the results of the actual function call, e.g. by assigning them to a dummy variable and not using them fur-

ther.

7 Lists and Related Structures 78

First, we need unsorted numbers,

which we quickly create using the

map...over... block.

After that, we pick the largest number

out of these 100,000 values by going

through the list and finding the largest

number in each case. We simply re-

turn "nothing" as elements of the re-

sult list.

A special control structure for traversing a list is the block

for each...in.... In the libraries you can also find a version

that allows access to the index. Also, with this block we can

determine the largest number of a list. But this is only fast

for long lists if we use the warp block - but then very fast.

Another very useful block is the keep items...from... block. It contains a predicate in the gray ring, i.e. a

function that returns either true or false, which is applied to all list items. The result is a list containing only

the list items evaluated as true.

We take again the just generated list

with 100,000 random numbers and

want to find out from this only those,

which are even, i.e. divisible by 2.

Here, too, we get access to the list element, its index and the total list via the small black arrows on the

right of the gray ring.

The block find first item ...in... works

very similar. It finds the first item that

matches the given predicate. If it does

not find an item, then it returns "noth-

ing". The block is useful, for example,

to make sure that there are no "ille-

gal" elements in a list. For example, if we want to perform arithmetic operations on the list elements, then

there should be only numbers in the list.

If you want to perform an arithmetic, logical or list operation on all list elements, you use the combine

...using ... block. It successively applies the specified binary operator to the entire list. As an example, we

want to calculate the sum of the list elements of list1.

7 Lists and Related Structures 79

If the list contains strings, we can

form a long word from it.

And of course, we can combine the

higher list operations, e.g. by compu-

ting the sum of all multiples of 231 of

a list.

Using the append block you can append lists to each other.

And the reshape block "reformats" a list to

other dimensions.

The combinations block is the Cartesian product of several sets. It

combines (in the case of two sets) all elements of one set with all ele-

ments of the other set.

And as a last note: the possibilities of the ...of... block should be con-

sidered if needed, e.g. to reverse the order of a list.

7 Lists and Related Structures 80

7.6 Recursive List Operations

After the very powerful blocks, let's briefly look at the more elementary blocks

for recursive programming. All advanced operations can be built from these.

Not too efficient, but elegant. The first block allows to insert an element at the

front of a list, the second returns the first element44. The third block returns

the remaining list after the first element, and the last one checks if a list is

empty.

We can think of lists as pairs consisting of a first el-

ement and the rest, and these pair elements can

also be empty. Traditionally, they are called car

(pronounced "carr") and cdr ("cudder"). As an ex-

ample for the application, we want to determine

the length of a list.

In a very similar way, we can insert a new list ele-

ment at a specified place in a list. If the list is empty,

then we simply return a list containing only the new

element. Otherwise, we check whether the ele-

ment should be added at the front, and if so, we do

so. If this is not the case either, we supply a list that

contains the first element at the front and a list in

which the new element is placed before the previ-

ous one, but in the rest of the list.

44 Or any other, but let's forget about that.

7 Lists and Related Structures 81

7.7 Hyperblocks

Some of the e.g. arithmetic operators have been extended in Snap! so that they can also be applied to lists.

The result are extraordinarily fast list operations that allow, for example, the manipulation of animated

images in real time. Hyperblocks can thus be applied to large amounts of data and are therefore suited to

handling media. Some of the operations are immediately obvious, but some take quite a bit of getting used

to. One should test the procedures in each case with small test lists, before one "lets them loose" on large

data sets. Although many of the operations are based on mathematical procedures, they often do not pro-

vide mathematically correct results, e.g. because they are not mathematically permissible due to different

dimensions. However, if you want to implement e.g. a matrix multiplication (see below), then it makes

sense to check the dimensions in advance and then let the hyperblocks work. A detailed description of the

hyperblocks can be found in the Snap! manual.

Let's start with the simple operations. In many cases the operation of the hyperblocks

is very obvious, because it is an application of the operator to all elements of one list.

Applying an operation to lists also works if the list consists of partial lists, as

is the case with the pixel list of an image. We select any image …

… and then switch to one modified by "coarsening" the value range.

The operation is fast enough to transform, for example, video images in real

time.

7 Lists and Related Structures 82

The results are somewhat more surprising when using multiple lists. Here, too, the op-

erators are applied successively to the list elements. With the addition of lists of equal

length this is still clear ...

… but with lists of different

length you have to know that

the result will be truncated.

In multiplication, the elements are also processed in sequence. So, it is neither a scalar

nor a vector nor a matrix product in the mathematical sense. The operator is applied

regarding the "reductions" in direct analogy to the addition.

If you process more complex list structures, you should read the manual beforehand to understand how

they are handled. As an example, for the use of empty lists as a "direction flag", the following example

shows how columns of a matrix can be filled out.

First, the list elements are created and

put into matrix form. Note that the

first parameter determines the num-

ber of rows, the second the number of

columns. So, you get a 4 X 6 matrix.

From this you can extract the nth col-

umn by specifying the column number …

… and reformat if necessary.

Much more understandable for the column deter-

mination is the calculation of the transposed matrix, from

which then the nth row is taken:

7 Lists and Related Structures 83

With this knowledge you can already do something.

First of all, we build a block for the scalar product

of two vectors. Of course, we need vectors of dif-

ferent lengths for testing, here with random num-

bers as contents. For this we use the fast

map...over... block.

To calculate the scalar product, we use the multi-

plication block as a hyperblock and add the results

using the combine...using... reporter. And be-

cause we want to stay mathematically correct, we

check the dimensions of the vectors beforehand.

The result is a very fast block that gives the meas-

ured multiplication time of 0 seconds for two

10,000-digit vectors, for example.

If this works so well for vectors, then of course we'll

try our hand at matrix multiplication in the usual

way. First of all, we have to create matrices. We do

that similar to the vectors.

The block for the matrix multiplication checks first

of course also whether the dimensions are correct.

Then it uses hyperblocks and higher functions. Be-

cause columns of <list> calculates the transposed

matrix, we can multiply the rows of the first matrix

A respectively with all rows of the transposed ma-

trix B, i.e. with the columns of B, scalarly.

Again, we can measure the time for larger amounts

of data. If we multiply two 100X100 matrices, then

it takes 0.1 seconds.

7 Lists and Related Structures 84

7.8 Fast Image Manipulation with Precompiled Blocks

Level: high school Materials: Expose flowers

As a last application we want to show how to change and display an im-

age in real time using the pre-compiled map...over... block. As an ex-

ample, we choose a color image in which we want to display only ad-

justable color ranges. This can be used, for example, to identify faces in

an image or, as here, to extract flowers.

In order to be able to react directly to changes, we use two variables

each for the limits of the color ranges: the current value and the last

value. If the current value changes, then the image is recalculated, and

the last value of the color value is adjusted. For the change of the varia-

ble values we use the slider representation of the variables.

At the beginning the "old values" simply get the current values. After

that, the scripts reacted to changes as described, e.g. for the red area.

The image is recalculated by checking for each

of the three color channels whether the color

value lies within the selected range. If this is

the case, the color value is accepted, other-

wise it is set to zero. Finally, the current trans-

parency value is appended to the pixel. Note

the small lightning bolt at the top of the map

block. It means that the script is precompiled

inside the block and therefore can be applied

very quickly to all list elements. You can get

this option by selecting it in the context menu

of the block.

7 Lists and Related Structures 85

7.9 Tasks

1. Find out about the different sorting methods on the web. Implement some of them like shakersort,

gnomsort, insertion sort, …

2. Complete the specified methods in such a way that erroneous entries are intercepted.

3. Implement matrices differently by structuring the lists used differently.

4. a: Learn about the data structure dictionary.

 b: Implement the structure with appropriate access operations.

5. a: Implement the data structure stack.

 b: Implement the data structure queue.

6. Implement a simple binary tree with the operations

 a: new tree

 b: add <element> to <tree>

 c: count elements of <tree>

 d: exists <element> in <tree>?

 e: remove <element> from <tree>

 f: determine the maximum depth of <tree>

 g: balance <tree>

7. Implement other control structures:

 a: do <script> until <predicate>

 b: while < predicate > do <script>

 c: case <variable> of < [[value1,script1], [value2,script2], [value3,script3], …] >

8. Implement recursively using only the elementary recursive operations

 a: the data structures stack and queue.

 b: an operation that deletes the nth element of a list.

 c: an operation that replaces the nth element of a list with a new element.

 d: an operation that returns the nth element of a list as result.

 e: an operation that adds a new element to the end of a list.

9. Implement common matrix operations using hyperblocks.

10. Implement a method to increase the contrast of an image using hyperblocks.

11. a: Implement a method to convert a color image to a black and white image using a precompiled block.

 b: Implement a method to obtain three color separations in the primary colors using precompiled

blocks.

8 Object-Oriented Programming 86

8 Object-Oriented Programming

OOP methods have also been used so far - because there is hardly any other

way. At this point we want to present the OOP features of Snap! in more de-

tail. We explicitly refer to the Reference-Manual of Snap!, where the meth-

ods are explained compactly. You can find it by clicking on the Snap! symbol

in the upper left corner.

The blocks that are significant for OOP can be found in the Control and Sens-

ing palettes, but the context menu in the Sprite area should also be noted. The

lower blocks of the Control palette are for "dynamic" management of sprites,

the menu for "static". This difference is significant because it is assumed that

only the static clones should be permanent, the others are e.g. deleted when

saving and not even displayed in the sprite area.

Snap! of course works all the time with objects, which are called sprites here.

They have their own attributes (position, direction, costume, ...) which can be

accessed using different blocks. The my <attribute> - block provides the

whole palette, the <attribute> of <sprite> - block knows the most important

ones and additionally shows the local variables and methods of a sprite.

You can get the value of a local variable

(here: the position) of another sprite e.g.

with

8 Object-Oriented Programming 87

To select a local method, we put the prototype of

the considered object into the <attribute> of

<sprite> block on the right and then select the desired method. The block returns the code of the method,

which can be seen by the gray ring around the method name. We execute this code in the context of a

sprite that can do something with the code: usually the prototype, a clone, or a copy of it. This can be done

using different blocks. If you call a local method of a sprite "from

outside", then in my opinion the run block is the most intuitive to

understand, if you ask a sprite to call global methods, then it is

better done by the tell block. The launch block starts a script as

an independent process.

Since a script is inserted into a gray ring, it can of

course consist of several commands, and parame-

ters can also be used, which are inserted into the

empty slots of the blocks, and which can be named

if required. This can be useful, for example, if you

are using multiple parameters and want to make

sure they are inserted in the right places. Since the

parameters are determined outside the called

sprite, they must also (usually) be listed outside the

script under with inputs. If the parameters are not

named, then they are inserted sequentially into

empty slots in the script blocks. In many cases you

can insert parameters directly in global blocks.

Local reporter blocks are handled quite similarly,

but by the corresponding reporter blocks of the

Control palette. Again, the call block is more suita-

ble for local reporters, while the ask block is more

for calling global methods in the context of another

object.

A newer feature of Snap! is

metaprogramming, the

ability to manipulate a script

directly by other scripts. For

example, if we are inter-

ested in the contents of the

get data from drawer <n>

block, then <...> of block

<a block> block will get the

corresponding script. We

can convert that into a list

of commands with the split

block.

8 Object-Oriented Programming 88

To this list we can simply add a copy of a command

and change the parameters. The modified list is

merged with join to form a new script that can be

executed with the call block.

Setting code parameters can also be done during the program, and the

block itself can be completely created or deleted.

Using the clone command from the context menu of a sprite (see above) we can create additional static

clones. These are randomly distributed in the output window. Dynamic cloning also creates new sprites,

but they are all in the same place. If you save the project and reload it, the

statically created clones will be created again, but the dynamically created

ones will not.45

An essential aspect of OOP is inheritance. In Snap! this is based on Lieberman's delegation model46, which

works with prototypes (i.e. concrete objects, not abstract classes) and clones and modifies them if neces-

sary. The model was described earlier. We will illustrate all procedures first with simple examples, then with

more complex ones.

45 This is a real benefit: with many clones, it is otherwise often difficult to get rid of them without destroying
the project.
46 Lieberman, Henry: Using Prototypical Objects to Implement Shared Behavior in Object Oriented Systems,
ACM SIGPLAN Notices, Volume 21 Issue 11, Nov. 1986

8 Object-Oriented Programming 89

8.1 Fiona and the Filing Cabinets

Level: high school

Materials: Fiona and the filing cabinets

We draw the costume of an elegant commode and

create a sprite named Cabinet for it. The commode

contains a local list variable content as data storage,

which we represent by this very commode. We equip

it with local access methods to the data by imple-

menting the methods put <data> and get. This re-

sults in a simple queue. We can use it to write arbi-

trary contents to and from the list.

Both methods and the variable are

indicated by the <attribute> of

<sprite> block.

We want to use two of these data

stores. For this purpose, we can ei-

ther create copies or clones of

the commode. With copies, later

changes to the prototype are not

applied, but with clones they are.

An exception are list variables.

Here, a reference to the list is cop-

ied in both cases, so that changes

to the list, e.g. insert operations,

affect clones and copies. To get independent lists, we need to break this link

after cloning, e.g. by re-setting (set <content> to <list>) or copying (set

<content> to map <> over <list>) the list. We opt for copies here and create

two of them, the sprites Papers and Souvenirs with slightly different cos-

tumes. For these we need an access from outside.

We get help from the IT officer Fiona. Fiona can see the existing methods on

other sprites, but how can she access the data stores? There are several ways

to do this in Snap! for commands and reporters respectively.

8 Object-Oriented Programming 90

Find method of another sprite:

- Select sprite (prototype if necessary) in the right input field:

- Select method in left input field:

The call returns the code of the method:

execute local method of another sprite:

Parameters are passed in order in the fields after "with inputs". They are only inserted into the blanks of

the method header on the side of the called object when it is clear which method will be executed at all.

Commands

with tell:

Fiona transmits to the addressed object (here: Papers) the method header to be exe-

cuted with the associated parameter values (here: personnel file). The object being ad-

dressed follows tell.

with run: Fiona asks the Papers object to execute the submitted method with the associated pa-

rameter values (here: personnel file). The called object is named in the input window of

the of block.

Important: The method is selected first by specifying a suitable prototype or clone as

object. After that the actually meant object is inserted, which can also be stored e.g. in

a variable!

with launch: like run, except that the script is executed as a separate process, i.e. without waiting.

8 Object-Oriented Programming 91

Reporter

with ask: Since this is a call to a reporter method (a function), a value is returned. Any parameters

are passed as described above. The called object follows ask.

with call: Comparable to run. Here, too, the called object is named as the second input.

If attributes of another sprite are to be changed from the outside, then this

can be achieved as usual via a set method. But it can also be done directly:

we execute the set <variable> to <value> block in the right context. To do

this, it must be wrapped in a gray ring to prevent it from being evaluated as

a parameter even before run is executed. That would be in the wrong con-

text. The ring is used to pass a block as code (see above), and not its result

after execution.

This block is to be understood as: "Execute the code that assigns a value to a variable in the context of the

Papers object with the parameter values content and list (1,2,3)".

And of course, we can also call the standard blocks.

Fiona as a well-trained IT officer can of course issue such commands, but a normal user probably cannot.

Fiona therefore provides new global blocks, which additionally receive the file cabinet to be used as a pa-

rameter. This simplifies the usage in the whole system very much. Fiona is pleased about the positive feed-

back.

8 Object-Oriented Programming 92

Tasks

1. Implement access control at the filing cabinets themselves or with the IT representative

 a: by a password request.

 b: with lists of users and assigned passwords.

2. Process the data by

 a: introducing plausibility checks.

 b: introducing encryption.

 c: implementing organizational forms in lists, rows, stacks, queues, trees, etc.

3. Save the data in a suitable way in text files.

4. Organize a "data center" that keeps, secures and organizes the data of a company (a school, a fam-

ily, ...). Define access rights and methods and implement the procedures.

8 Object-Oriented Programming 93

8.2 Magnets

Level: from middle school Materials: Magnets

As a very simple example of how to deal with ob-

jects, we choose a magnetic field whose orienta-

tion near a "north pole" is indicated by "elemen-

tary magnets". The little ones are simply supposed

to point to the north pole.

So, we draw the big magnet without any function-

ality (you can only push it around) and a single

small one. We equip this one with the required

properties and clone it as often as necessary.

Pointing to the big one is simple. If an elementary

magnet receives the message "come on!", it con-

tinuously points to the north pole.

Cloning is a bit more complicated, because we

want to distribute the clones naturally in the image

area, like this: We write the method as a block of

the large magnet. In it we create a clone of the

small magnet and assign it to a local variable. We

then send the clone to the position specified by the

parameter values, rotate it in any direction and let

it appear. Ready.

Dealing with many dynamically created clones is

extremely easy: if we click the red stop button at

the top-right of the window, all of them are gone again. And since dynamically created clones are not dis-

played in the sprite area, their scripts are really fast. If you move the big magnet, then all elementary mag-

nets realign themselves - immediately.

Task:

Add a "south pole" to the "north pole" and determine the direction of the force on the elementary magnets

at their locations. Align elementary magnets in this field.

8 Object-Oriented Programming 94

8.3 A Learning Robot47

Level: high school Materials: Learning robot

As another example of inheritance by delegation, let us consider a robot that has four touch sensors. If one

of them comes into contact with an obstacle, then the robot changes its direction, but also has a new bump.

Using a drawing program, we draw a picture of a world bordered by black walls and in which there are some

black obstacles. For reasons we will learn in a moment, we spray a diffuse red mist around the objects and

along the walls with the spray can. Into this world we place Roby - as a small circular sprite. Further we

draw an even smaller blue sprite, which we endow with a predicate touching

the wall?, i.e. a touch sensor. We clone this sprite three times and then attach

the four sensors to the robot.48 We name them TouchSensorN, TouchSen-

sorE, ... etc. according to the compass directions. The result is an aggregation. We equip the robot with

two local variables vx and vy, which describe its velocity components in these directions. If now a touch

sensor reports a wall, then the corresponding velocity component is changed. We get the following config-

uration, in which Roby moves safely between the obstacles - as said, with many bumps:

47 The example has the walking robot of Prof. Florentin Wörgötter, Bernstein Center for Computational Neuro-
science Göttingen, as a template, described e.g. in http://www.chip.de/news/Schnellster-Roboter-lernt-ber-
gauf-zu-gehen_27892038.html.
48 The next chapter describes how to create aggregations of sprites, i.e. how to pin sprites to others.

8 Object-Oriented Programming 95

Now the red spray paint around the obstacles and walls comes into play.

This is to mark areas where an ultrasonic sensor receives echoes from

the objects. So, we equip the robot with four ultrasonic sensors that

respond to this red paint. We call them USsenorN, …

The robot should learn that an ultrasonic echo often precedes a collision, and that it is therefore better to

turn back already at this echo. So, we need a mechanism that detects that an echo came before a collision.

One way to achieve this is to have a counter in the ultrasonic sensor that is set to an initial value (here: 100)

when it detects red color (i.e., an echo). This counter is continuously counted down to zero - and, if neces-

sary, increased again beforehand. If this counter has a value greater than zero during a collision, then the

echo has been received shortly beforehand.

This constellation initiates a learning step that takes place in a neuron. This neuron has two inputs, which

come from the associated touch sensor or ultrasonic sensor and are each assigned a weight, as well as a

threshold value. The line from the touch sensor has the weight 1. If a signal e.g. of the strength 1 comes

from there, then this is multiplied by the weight 1. The result is greater than the threshold value (here: 0.5)

and the neuron "fires". The weight of the US sensor initially has a value of 0. It is increased whenever the

touch sensor detects that the counter of the associated ultrasonic sensor has a value greater than zero

during a collision. If a sufficient number of such learning steps take place, the product of weight and signal

also exceeds the threshold value of the neuron at the US sensor, and this also fires in this case.

We now realize this form of Pavlovian learning.

The ultrasonic sensor sets a counter to an ini-

tial value. This is then counted down to zero.

The touch sensor triggers. Since the coun-

ter still has a value greater than zero, an

echo was received shortly beforehand.

Timing

pulse from touch sensor
0.5

1

0

Puls from

US sensor amplification factors

per input
the neuron

"fires".

the neuron

8 Object-Oriented Programming 96

The ultrasonic sensor works exactly as described above. The local

attribute counter can be accessed directly with the <attribute> of

<object> block. So, the actual changes take place in the touch sen-

sors and the four associated neurons. Since these are clones of the

only prototype in each case, it is almost sufficient to make the ad-

ditions only in this one. The clones adopt them because they inherit

the methods of the prototype. However, we must still indicate af-

terwards, to which element of the four groups the sprite is to react.

When touching a wall, we still have to determine whether the asso-

ciated ultrasonic sensor triggered "just before". In the clones, we

then overwrite the inherited "pale" method by adjusting the asso-

ciated sensor. Thus, the paleness also disappears. Before we have

cloned the ultrasonic sensor and the neuron three times and added

the four new purple ultrasonic sensors and the yellow neurons to

Roby. He looks like this now:

The neuron still needs a predicate

is firing? that works as described

above.

Finally, we change the behavior of Roby: he changes his direc-

tion when the corresponding neuron fires.

8 Object-Oriented Programming 97

Roby is now looking for his way, initially be-

tween the obstacles, then along the "echo

area". He has become really smart!

Tasks

1. Give the program an interface that makes it easy to change the essential factors: the speed, the

weights, the thresholds.

2. Introduce additional sensor types as well as additional events in addition to collisions.

 a: Let Roby find correlations between sensor values and events in different "worlds". Roby adapts to

its environment this way.

 b: Discuss other ways that Roby is adapting to a changing environment.

3. Discuss the need for "forgetting" as well as ways to make this process happen.

4. Replace Roby with a mouse with a cheese sensor. Put them in a labyrinth. There she should search

for the cheese.

8 Object-Oriented Programming 98

8.4 A Digital Simulator

Level: high school Materials: Digital simulator

A digital simulator is a program that can be used to simulate digital circuits. It consists of switches, LEDs

and gates, in this case only NANDs (Not AND), from which all other circuits can be built. On the components

sit different kinds of sockets, with whose help signals are passed on. We can show the connections clearly

in a (simplified) UML diagram. The inheritance is done in this case via delegation.

 Sockets and Connections

As the "mother of all sockets" we draw a neutral socket,

which serves as a prototype for input and output sockets. All

sockets have a value, which can be 0 or 1. Inputs get their

value from the connected cable, or they get the value 1 for

technical reasons if they are not connected. Outputs get their

value from the component on which they are located. So, they

represent the result of a logical circuit. All sockets inherit from

the neutral socket the method show yourself, which repre-

sents their value in color, as well as the local variable value.

8 Object-Oriented Programming 99

Using the context menu (clone), we create two clones of the neutral socket, which serve as prototypes for

inputs and outputs in the following.

Sockets are to be connected by first clicking an output and then an input. If only the input is clicked, then

its connection to an output is deleted - if it exists. Connections are displayed only rudimentarily as lines on

the stage. If you move the switching elements afterwards, the lines remain "free in space"49. Inputs can at

most be connected with an output. For this they get an additional variable connection. Outputs can dis-

tribute their values to several inputs; therefore, they receive a list variable connections, in which the con-

nected inputs are entered or removed. If an output is clicked, then the global variable theOutput receives

this output as value. If an input is clicked, then it provides for the update of the connections.

Outputs have it somewhat easier: they provide the capabilities to add

and remove connections - and wait what comes.

49 The representation and especially the distribution of lines is an independent problem.

8 Object-Oriented Programming 100

Switches

Switches are used to change input values. We create two costumes representing

the open and closed state respectively. The left end of the switch we leave open,

it symbolizes the connection to the ground and thus has the fixed value 0. To the

right end we add an output socket, which gets either the value 1 (state "open")

or 0 (state "closed"). We get the new socket by cloning the output socket. Then

we move the obtained sprite to the right place at the switch.

There it must now be anchored. To do this, we move the sprite symbol of the

output from the sprite area over the switch in the output window. Its outline lights

up when it realizes that it is meant. This attaches the socket to the switch: it is the

anchor of the resulting aggregation.

So, an aggregation of sprites is created by first dragging the elements on the stage

to the right places and then dragging the sprite symbols from the sprite coral onto

the anchor element. The attached sprites (here: the socket) become elements of

the parts list of the anchor (here: the switch) and are displayed at the sprite sym-

bol of the anchor. With detach from ... from the context menu of the attached

sprites they can be detached from the anchor again.

Since we want to operate the components of our digital simulator by mouse, it

makes sense that the switch reacts to mouse clicks. This is easy to achieve: with

every click he changes his costume. To do this, he must know what he looks like at

the moment: with <costume-name> of <myself> he gets the current costume.

We still need a mechanism to control the reac-

tions of the parts, in this case the output

socket. Since it should be transferable, the

method must be generally usable. So, we equip

each part with an operate method and a vari-

able value. If the state of the switch changes,

then the switch changes its value. Finally, it

calls the operate method of the output - which

is the only element of its parts list here. We use

the launch block to not let the program execu-

tion wait.

8 Object-Oriented Programming 101

Gates

To create gates, we first introduce a prototype Gate that has two inputs and one

output. Furthermore, it contains a variable switching time. We add the necessary

sockets as we learned with the switches. From this gate we can derive other gates

like AND, OR, XOR or NAND. For the NAND we create a clone of the gate called NAND

and give it a customized costume.

The prototypes derived from the gate inherit the gate's operate method and the in-

stance variable value. Both are actually useless, of course, since the gate has no real

function at all. We therefore leave the method empty and overwrite it in the derived

prototypes. (If we forgot something, we can also create variables and methods in the

prototype afterwards. These are inherited to the clones immediately). Inherited variables appear slightly

lighter in clones than own ones. If they are overwritten, then the changed elements get the normal color.

The operate method of the NAND is simple to

write. The my <parts> block shows us the inputs

and outputs of the NAND. We can read their values

or set them as we did with the switch. We use the

launch- instead of the run-block again.

The Pen

The pen provides only a simple method of

drawing straight lines in different colors on

the stage. It has no other tasks.

8 Object-Oriented Programming 102

LEDs

As a very simple example of adding new components to

the system, we introduce the prototype of an LED (light

emitting diode). This is given two costumes for the values

0 and 1 as well as an input. Since this one knows the sys-

tem well, the LED can fully rely on it and limit itself to what

LEDs do - glow. There is nothing more to do.

The Interaction of Components

The activity is supposed to wavelike pass our switching network in a feed-forward manner: Each compo-

nent notifies the connected parts and calls their operate method when something has changed. If, for ex-

ample, an output socket sits on a switch, then the switch calls the operate method of the output if it was

clicked and therefore changed its value. This in turn activates all connected inputs. Each of these inputs

calls the operate method of the gate it sits on - but only if its value has changed. If not, the wave is stopped

here. So far, the gate can only be a NAND. This waits for its switching time, reads the values of its inputs,

and activates the output - and so on.

The operate methods of input and output serve as examples.

8 Object-Oriented Programming 103

Tasks

1. Create prototypes for the following gates based on the NAND model.:

 a: an AND b: an OR

 c: an XOR d: a NOT-OR (NOR)

2. Create a prototype for NOT gates, which have only one input and one output.

3. Create a prototype for a clock generator. The clock frequency is to be adjustable.

4. Create a prototype for RS-FlipFlops (RS-FF). Inform yourself about their mode of operation before-

hand.

5. Create a prototype for JK-master-slave-flip-flops (JK-FF). Find out about how they work beforehand.

6. Our gates react after a switching time, which can be different. Why actually?

7. Develop an interface with buttons, selection boxes, ... for the digital simulator, with the help of

which components can be created and deleted, elements can be selected, the simulation can be

started and stopped again, ...

9 Graphics 104

9 Graphics

9.1 Line Graphics with Koch- and Hilbert Curve

Level: from middle school Materials: Snowflake, Hilbert curve

In Snap! each sprite has a (virtual) pencil to draw on the stage. The functional-

ity corresponds to the well-known Turtle graphics50. The blocks for this can be

found in the two palettes Pen and Motion. In the first one the pen is controlled,

i.e. raised or lowered, pen color and width are set, ... In the second one the

commands for moving the sprite are found. During this movement, the pen

leaves "traces" depending on its state, which then form the generated line

graphics - and which can also be further processed as pen trails. Note that the

pen is located in the rotation center of the current costume of the sprite. You

can move this in the costume editor using the crosshair tool.

If we choose the already known pen as costume,

then the adjacent script creates a simple circle.

The example is a good way to demonstrate the effect of the warp block. While

without it the pen draws the circle quite comfortably, the finished circle with

warp block appears practically immediately. The reason is that in the first case

the state of the system is shown anew after each block execution, while in the

second case this happens only in larger intervals. The difference is "dramatic".

50 https://de.wikipedia.org/wiki/Turtle-Grafik

9 Graphics 105

A similar acceleration can be achieved using the Turbo mode option in

the settings menu. However, this applies to the entire program execution

and not only to a selected area.

With the help of the Turtle graphics, some of the well-known recursive

curves can be drawn very elegantly. We start with the snowflake- (or

Koch-) curve. It is created by repeatedly "bulging out" triangles in the

center of the sides of a triangle until the sides become too short for this

process. In this case, the sides are drawn only as straight lines. A snowflake

is created by assembling an equilateral "triangle" from three such sides.

Draw a snowflake side of length n

The procedure can be translated directly to Snap!

n < 2

wahr falsch

Zeichne eine Schneeflockenseite der Länge n/3

Drehe dich um -60°

Zeichne eine Schneeflockenseite der Länge n/3

Drehe dich um 120°

Zeichne eine Schneeflockenseite der Länge n/3

Drehe dich um -60°

Zeichne eine Linie

der Länge n

n < 2

true false

Draw a snowflake side of the length n/3

Turn by -60°

Draw a snowflake side of the length n/3

Turn by 120°

Draw a snowflake side of the length n/3

Turn by -60°

Draw a line of length n

9 Graphics 106

For the construction of the Hilbert curve, we use a version after László Böszörményi51. It is

one of the area-filling curves, which has a kind of box as generator. The corners of the box lie

in the centers of the four quadrants of a square. In the next stage, this box is reduced by half,

and four versions of it are rearranged in mirrored or rotated versions in the quad-

rants. Finally, the smaller boxes are connected to each other as shown.

In Böszörményi's version, the boxes are marked A to D according to orientation and

direction of rotation.

Ai: Bi: Ci: Di:

The Hilbert curve is composed of these elements by starting with A and calling the

other elements "twisted". The parameter i indicates the recursion depth and thus

the size of the elements. It is "counted down" to zero.

The call is made as de-

scribed, after the sprite

has been sent to the

starting point right-up.

The final length of the

sections to be drawn is

determined from the

recursion depth - and

then drawing takes

place. Again, the effect

of the warp block is

drastic.

51 http://bscwpub-itec.uni-klu.ac.at/pub/bscw.cgi/d11952/10.%20Rekursive%20Algorithmen.pdf

http://bscwpub-itec.uni-klu.ac.at/pub/bscw.cgi/d11952/

9 Graphics 107

9.2 The RGB Color Cube

Level: from middle school Materials: Color cube on stage

Encouraged by this success, we will next try to create the familiar

color cube of the RGB color space52 ourselves. To do this, of

course, we need to be able to set the RGB colors for the pen. We

find ways to do this in the Pen palette. First, let's see how it rep-

resents RGB(A) colors. We already know that!

In the same way we can set the pen color as well.

Alright: We enlarge the stage to the dimensions 500 x 500 pixels

by changing the corresponding entries in the Settings menu. Then

we draw.

First of all, the front side of the color cube.

Then the right

side.

52 https://de.wikipedia.org/wiki/RGB-Farbraum

9 Graphics 108

And finally, the top on it.

This results in the total RGB color space.

9 Graphics 109

9.3 Printing and Cutting Costumes

The pens of the sprites draw on the stage, but pixel graphics are

also possible on costumes of sprites. With the help of the pen

trails block, the current state of the stage can be transferred into a costume,

which can also be "printed" back onto the stage if necessary. The paste on

block prints the current costume of a sprite either onto the stage or onto a

selected other sprite, as far as it overlaps with it. The block cut from cuts the

area of the own costume out of the costume of the specified sprite.

As an example, we first create a "scribble" on the stage.

Next, we give the sprite a yellow rectangle as a costume and send

it back to the center.

We create a second sprite and give it the costume of the pen

trails. Then we cut this costume out of the yellow block.

Finally, we want to draw an ellipsoid on the yellow block. We give

the second sprite an appropriate costume and "paste" it onto the

yellow block.

9 Graphics 110

9.4 Drawing on Costumes - with an own JavaScript Library

Level: high school Materials: Color cube on costume

Snap! is originally based on the HSV color model53, similar to Scratch.54 But I prefer the RGB model55,

because it corresponds directly to the color sensors in the human eye and many technical applications. But

maybe also out of habit. Meanwhile Snap! supports both HSV and RGB representations of colors in

the blocks.

Using the <property> of costume <costume> block, we get access to

the properties of a costume, such as its dimensions and its pixels. As an

example, let's take our pen. Let's take a closer look at its pixels.

We get a list that contains as elements

4-element lists with the three RGB val-

ues of the pixels as well as their trans-

parency (alpha) values. All values

come from the range 0...255, so each

can be represented by a byte. For

transparency 56 , the value 0 means

that the pixel is "invisible", and 255

means that it should be drawn with

full colors. With the help of this pixel

list, we now want to recolor the pen.

We therefore swap the blue values

with the red values, but only if the

pixel is "quite blue".

There we go!

53 https://de.wikipedia.org/wiki/HSV-Farbraum
54 In the libraries of Snap! you can find more color models.
55 https://de.wikipedia.org/wiki/RGB-Farbraum
56 actually better: visibility

9 Graphics 111

Drawing on costumes has, among other things, the advantage that JavaScript commands related to this

area can be used without knowledge of and consideration for the rest of the Snap!. Thus, if necessary, one

has a small playground where parts within the graphical language Snap! can be written in the text-based

language JavaScript.57 As an example we create the color cube again, but this time on a sprite costume.

First of all, we need a costume: faint

yellow and sufficiently large. We set

the stage to 600x600 pixels and write

a fast block for it.

After creating the appropriate varia-

bles, we found the beginning of our

script like this.

We can now manipulate the pixels of

this costume. For this we write two

small JavaScript methods to read

and set the color of a pixel respec-

tively.

57 If you want to. Snap! is now fast enough that such extensions can usually be dispensed with.

9 Graphics 112

With these two methods we can now create the RGB color cube again, after we have allowed the use of

JavaScript in the Settings menu.

With this we can have the color cube

drawn again.

9 Graphics 113

While we're at it, we might as well implement some more of the common graphics operations in

JavaScript.

9 Graphics 114

We save these blocks in a separate library (File →

Export blocks...), selecting beforehand which blocks

should be included in it. We rename the file saved

in the download directory, e.g. to MyOwnDraw-

ingLibrary.xml and move it to a suitable location.

From there we can load the blocks into other pro-

jects via File → Import... and use them - just like any

other library.

9 Graphics 115

9.5 Drip Painting

Level: high school Materials: Drip painting

One of the methods of bringing randomness into artistic design in modern painting is to splash blobs of

paint on the canvas with a brush. The impinging drops of paint are further divided on impact, resulting in a

random pattern. We want to simulate this process, drip painting - and that's not so easy.

We try a simple but computationally very expensive approach: Within a rectangle, n random circular spots

with slightly different colors are created, which become more transparent towards the edges of the rectan-

gle. Eventually, the color thickness decreases there. Since n is in the order of 100 and we want to distribute

a few thousand drops per image, we transfer the drop drawing to a JavaScript function that can do some-

thing like this very fast.

As parameters we pass the coordinates of the upper-left

corner in the also passed costume, the width and height of

the rectangle circumscribing the drop, the three RGB color

values and the number of "partial drops". In the function (as

known by now) the 2D graphic context is determined and a

radius for the core area of the drop is calculated. Then the

coordinates of the image center are determined, and n par-

tial drops are drawn, whose positions, radii, colors and

transparency are chosen randomly. A strongly enlarged

"drop" looks then e.g. like this:

9 Graphics 116

Of these drops we now distribute a few thousand

on the canvas - and get an optimistic abstract

Spring Picture.

But of course, we can also make the color distribu-

tion dependent on the position - and get

Some Red and a lot of Blue.

With some green to it: Untitled 37.

And of course, you can become more courageous:

Balancing Act

9 Graphics 117

9.6 Edge Detection

Level: high school Materials: Edge detection

In order to recognize objects in an image, it

is often helpful to highlight the boundaries of

these objects - the edges. One way to do

this is to 1) convert to a grayscale image, 2)

use a threshold to convert to a black and

white image, and 3) detect edges in that

black and white image. The first two steps

can be done relatively fast in Snap! using the

map...over function, the third requires a lot

of computation, so there are plenty of op-

portunities for coffee breaks. Or, after devel-

oping the procedure in Snap!, we transfer

this task to a JavaScript function. Edge de-

tection is a precursor to object detection.

The recognition of the license plate of a mo-

tor vehicle on a video image can serve as an

example.

We get an image that has edges that are

clearly visible and load it as our sprite's cos-

tume. Next, we switch to a copy of the cos-

tume to preserve the original. We determine

the width, height, and the pixel list of the im-

age with the block provided for this purpose

from the Looks palette.

This image is to be converted into a grayscale

image. We can achieve this step by step by

processing the individual pixels - a typical

task for the map...over function, here using

the precompiled version. This needs a script

that can apply it to the individual list items.

It calculates the average gray value of the

three RGB values and assigns it to the three

color channels. It leaves the transparency

value unchanged.

9 Graphics 118

A black and white image is to be created

from the grayscale image. To do this, we

specify a threshold value. All gray values

greater than the threshold are set to full

white, the others to black. Also, for this we

write a function that is run by map...over.

In the black and white image, some repair

work should still be done: individual isolated

points should be deleted, line gaps should be

closed, and so on. (see Tasks). We will do

without that here.

The last step is to find the edges in the black

and white image. To do this, we examine the

surroundings of each pixel. If all points have

the same color as the pixel, then this pixel is

located in an area and is drawn white. If at

least one differently colored pixel is found,

then we have found an edge pixel and color

it black. Since changes in pixel values affect

the neighborhood, the changes are made in

a list copiedPixels.

First of all, we need to have access to the in-

dividual pixels via their coordinates in the im-

age. We could use the JavaScript graphics

library developed earlier for this, but we

want to create two new blocks for it here.

We will use them in a block edge detection.

9 Graphics 119

In edge detection we have very traditionally examined the environments of all points, which takes a corre-

spondingly long time. However, we can just as well examine the pixel list sequentially, taking into account

that we find the neighbors of a pixel partly next to the pixel itself, partly shifted "to the left" or "to the right"

by one image width. The sequential run allows us to use the map...over block in the precompiled version.

Let's see if this is worth the effort. For the sake of brevity, we won't check here if we have an edge pixel.

So, we treat the image as a torus.

9 Graphics 120

Examine the three pixels in the center.

If a color difference was found, return a black

pixel.

Now the one in the upper row above the

pixel under consideration, …

… and then the three below.

If no differences were found, return a white

pixel.

We get - with small deviations at the edges -

the same image as before. However, this

time the processing took only half as long.

9 Graphics 121

9.7 Tasks

1. a: Find out about the C-curve on the Internet.

 b: Try some steps to construct the curve "by hand".

 c: Implement a script to draw the curve in Snap.

 d: Proceed accordingly for the Dragon curve, the Peano curve and the Sierpinski curve.

2. Display the RGB cube from another point of view so that the three previously hidden sides become

visible.

3. If you want to try your hand at JavaScript: create color gradients and, if necessary, the RGB color

cube in a JavaScript function.

4. Change the color values iteratively, i.e. without the map function, by accessing the individual pixels.

Measure the execution times for the different methods.

5. Some painters apply the colors with a spatula. Create "spatula pictures" that "spill out" in one di-

rection and can contain multiple colors. Create random pictures from them.

6. a: Delete individual isolated pixels in black and white images.

 b: If you delete all edge points in black and white images ("melt off" the edges) and then add points

to all edge points again - or vice versa, then you can delete single pixels, close gaps in lines, etc. by

alternately and possibly repeatedly applying the procedures. Implement the procedures and test

them.

7. If you want to program something in JavaScript:

 a: Implement the conversion of grayscale images to black and white images as a JavaScript function.

The threshold value is to be given by a variable in slider representation.

 b: Implement edge detection as a JavaScript function.

8. Extrasolar planets are usually discovered when they darken their sun

a bit as they pass between their star and Earth. Get an image of the

Sun and make a black circle, the planet, pass in front of the Sun. Count

the number of bright pixels visible in each case and plot the results of

the planetary transit on a graph.

10 Image Recognition 122

10 Image Recognition

The following three examples represent a sequence in which, with increasing difficulty, some possibilities

of Snap! in image processing are shown. Problems were chosen that provide access to the current discus-

sion of digital media and are thus relevant to the field of computer science and society.

10.1 A Barcode Scanner58

Level: from middle school Materials: Barcode reader

We want to analyze a barcode, as used on the labels of goods

in a supermarket, with the help of a "laser" (a red dot) and

convert it into a string of characters. First of all, let's have a

look at the planned setup. We should not miss the very small

red dot on the left side of the working area - this is the "la-

ser"!

What is EAN code?

The European Article Number (EAN) code comes in different variants. Here we consider

the EAN-8 code, which consists of 8 digits, the last of which is a check digit59. The digits

are represented by four black and white stripes of different width. The space between

two black bars is therefore also part of the code! On the left and on the right of the bar-

code there are two black and one white bar in between as delimiters. The center is

marked by five such bars. All of them have the width "1". The code was chosen so that

all the digits have a total width of "7". We will not go into further details here.

To determine the coded numbers, the laser dot is moved across the code from left to

right. It "measures" the positions of the color changes and enters them in a list. The bar

widths are calculated from this list. Since the first three bars have the width "1", we can

determine this value quite well by averaging. The other line widths are multiples of this

unit. Four bars each result in the code of a digit, which we determine using the table. The

procedure can be summarized succinctly in the form of a structogram.

58 Partly according to E. Modrow, The SQLsnap supermarket, Scratch2015 Amsterdam
59 Siehe z. B. https://de.wikipedia.org/wiki/European_Article_Number

EAN-8-

Codetabelle

Ziffer Code

0 3211

1 2221

2 2122

3 1411

4 1132

5 1231

6 1114

7 1312

8 1213

9 3112

The „Laser“

Determine the x-positions of the edges of the black and white lines.

Determine the line widths from these, deleting the markings in the process.

Determine from these the eight four-digit codes of the numbers.

Determine the EAN code from these.

10 Image Recognition 123

Converted into a Snap! script of the laser we get:

To do this, we pressed the "Make a variable" but-

ton in the Variables palette of Snap!, entered

the variable name EAN-8-Code in the window

that popped up, and marked this variable as local

("for this sprite only"). Since it is not needed for

any other object, we limit its validity to the scripts

of the laser. After that, the variable appears in the

Variables palette. While we're at it, we'll also create three other variables with the names edges, line

widths and encoding. The check mark in front of the EAN-8-Code variable means that the variable will

be displayed in the output window. There we can still change its appearance in the context menu (right

click on the variable). We drag the first block under the variable names set <variable> to <value> into the

script area. Using the small black arrow, we can then select a variable identifier that is "visible" to the laser

and specify a value for it. If we now click on the block, it will be executed and the variable will get the desired

value, which can be seen immediately in the output area.

After these preparations, we must slowly start to solve the actual problem. One thing we have to teach the

laser in any case: to find the next black line. To do this, we switch to the Costumes section and draw a

small red dot there as a new costume - the laser dot. Alternatively, we can create the costume with a

graphics program, save it as a png file and drag it to the Costumes area. Using the block touching from

the Sensing palette, we can now check if our laser sprite touches the specified color. We can select this

color after clicking on the color field anywhere from the Snap! window or from the color field that pops

up. We use this block and a second one that determines whether the edge of the workspace has been

reached as a termination condition of a loop from the

Control palette, in which the laser sprite is moved one

step to the right at a time.

When testing this block, we notice that sometimes the

laser does not move at all. When repeatedly crossing the

bars, it will happen that the laser touches a white bar on

the one hand, but still touches a black one on the other

hand. After all, it has an expansion, albeit a small one.

We therefore make sure that it first advances so far that

it no longer touches any black areas. Then he runs off.

After testing this script extensively, we wrap it in its own method, a new block, called go to the next black

pixel, which is marked local because no one else needs it. After that, we create a very similar method go

to the next white pixel. The comment blocks can be found in the context menu after right-clicking on the

script area.

10 Image Recognition 124

We test the interaction of these two methods in detail. After that we

make sure that the variable edges gets an empty list as value (set

<edges> to <list>) and that the x-position of the laser is added to this

list each time a new stroke is reached (add <x-position> to <edges>).

We delete the last two values of this list since they are generated when

the right border is reached. We can observe the work of this script if we

mark edges as visible with a small check mark. Since everything works,

the script is wrapped in a new block determine edges.

Now three very similar methods fol-

low, in which in each case the last list

just generated is traversed to deter-

mine the next values. We process the

first values of each list and then delete

them until we are "through".

First, we calculate the widths of the

sampled bars as differences of the val-

ues of the edges list and store them

in the line widths list. Next, we deter-

mine the codes represented by this by

averaging the width "1" from the first

three bar widths and storing it in the

script variable width 1, which is only

known within the new block. We then

delete the initial marker and calculate

the first 16 stroke widths for the first

four numbers. After that we delete

the middle marker and proceed ac-

cordingly for the second four num-

bers. Finally, the rest of the list of line

widths is deleted. The determined val-

ues are stored in the encoding list.

Now only the decoding of the numerical values in the encoding list is missing. We again declare a script

variable code for the new block. We repeatedly compose this from four numerical values (using the join

block from the Operators palette, which works with strings). Depending on the value of the result we get

the next digit of the EAN code.

10 Image Recognition 125

Our new blocks, which we can use like any other command

block at the laser script level, can be found at the very bottom

of the Variables palette. The small marker pin in front of the

method names indicates that the methods are local to the

sprite. They are not visible in other sprites.

We create the arrow with one of the

generators for this on the Internet and

save them as costumes of a new sprite,

which we create with the arrow but-

ton above the sprite area at the bot-

tom-right of the window. We name

this sprite Barcode. To switch between costumes, we create

a global block show a barcode (to also show this way of com-

munication between objects). This enlarges the costume to

twice its size and moves the sprite to the center. The block is

visible for all sprites.

Our little project is to be controlled by scripts of the stage. If

the green flag is clicked, then first the Barcode object is

asked to show a new barcode - that is, to change the costume.

This is done with tell <barcode> to <show a barcode>.

Since the block to be

executed, outlined in

gray, and thus marked

as code, has been

globally declared, we

can simply drag it into

the previously empty

slot in the tell block.

Then the stage sends the "start!" message only to the Laser object.

Alternatively, it could have sent this message to all of them. If only

the Laser sprite reacts, then this would have the same effect.

The last two scripts are used to initiate costume changes also by pressing the space bar and read operations

by clicking on the stage.

10 Image Recognition 126

10.2 Project: Transit Prohibited!

Level: from middle school Materials: Transit prohibited

Modern cars have a camera that helps them "see" and recognize traffic signs. We want to

try something like that. We'll find images of some common traffic signs and scale them all to

100 x 100 pixels using a graphics program. After that we drag them into the Costumes area

of a Snap! sprite that we call Traffic sign.

As you can see, the signs are quite different. Therefore, one task will be to identify the shape

of the sign. We find round, rectangular and different triangular signs. Fortunately, we already

have a laser from the last project, which we will modify for the new task. To do this, we

export the Laser sprite from the Barcode project to an XML file Laser.xml (right-click on

the sprite, click "export..." from the context menu) and import this file into the new project

either using the File menu or by dragging it onto the Snap! window. In the Variables palette

of the laser, we delete all variables except edges, then we delete the local methods except

go to the next black pixel. We open this in the block editor (right click on it), drag the blocks

to the script level and then delete this method too.

How do we now distinguish the forms of the signs?

You can come up with very different methods for this. We will try it this way: We determine

the horizontal limits of the signs at three heights and then the vertical limits at three posi-

tions. Then we look at the results.

First the left edges … then the right …

… and accordingly, the upper and lower.

We join the four scripts together and wrap them in a method determine edges. For example, we get the

following results.

10 Image Recognition 127

That looks good - except for the stop sign. Its edges look suspiciously like a round sign; we still have to come

up with something for them. Maybe a 13th "cut" at a suitable (here: fourth, in the list: fifth) position? For

this we can omit the right edges because the signs are obviously symmetrical. If we do that, then we get for

the "round" candidates:

The 5th list entry contains the value for height 19 in each case - and thus a measurable difference.

To evaluate our results, we write a determine shape block. This is supposed to be a reporter block that

determines and returns a value - the shape.

For rectangular signs the entries 2, 3 and the 4th entry should be about the same, for the triangular signs

the values grow or fall. If we assume something round (the second and fourth entries should be about the

same size), then it is the octagon of the stop sign, if the third and the fifth entries are about the same. And

the rhombus of the right-of-way sign, if the second entry is rather small. Otherwise, really around a round

sign. And errors can occur of course.

10 Image Recognition 128

With this we have already quite limited

the number of possibilities, and we see

that - so far at least - we get by with the

results for the left edge. We write a local

method shape?, which determines the

shape of the currently displayed sign. In

addition, the laser is sent "into the heath"

and hidden so that it does not interfere

further. Its work is done.

For the further meanings of the signs, the colors on the edge and inside are important. For the final deter-

mination of the type of traffic sign, let's just count the number of different colored pixels in the sign. Maybe

that will be enough. We leave this work to a new object called Color counter. This needs the pixel list of

the current costume of the Traffic sign object. We politely ask this for the required data, which we store

in a local variable pixels. There we have a list of the three color values and the transparency of the pixels

of the current costume. Since this has the dimen-

sions 100 x 100, we get 10,000 values.

10 Image Recognition 129

In this list, the pixels outside the actual

sign have the transparency 0, those in-

side the value 255. The three RGB values

in front of them do not represent "pure"

colors, but mixed values that are "pre-

dominantly" red, for example. We

change this by a method pure colors of

..., which sets color values above 100 to

255, the others to 0. This works very fast

in the compiled version of the map-over

block even with 10,000 values.

Similarly, let's count the "pure" colors in the image: We introduce a separate script variable for each, which

we initially set to zero. Then we look at all pixels of the sign that have a sufficiently large transparency. For

these we analyze the RGB values and increase the value of the correct variable. Finally, we return a list with

the results, in which we insert the color labels so that we don't get confused.

10 Image Recognition 130

10 Image Recognition 131

For easy use of the methods, we write again a

global method colors? which initiates the corre-

sponding operations.

We leave the control of the objects to the stage.

When the space bar is pressed, the traffic sign

should change and when the green flag is clicked,

the analysis takes place. The stage object queries

the results of the others and evaluates their data.

For evaluation, we use the determined shape on

the one hand and the counted color values on the

other. In simple form, this can be done as described

opposite.

The results are as desired.

10 Image Recognition 132

10.3 Project: Face Recognition

Level: high school Materials: Face recognition

In order to discuss the social consequences of informatics systems, face recog-

nition is a good topic. Therefore, we want to use the already known features

of Snap! for this purpose.

Passport photos are strongly standardized for good reasons: the facial posture

is prescribed, ears must be visible, ... This makes face recognition much easier.

We therefore draw four faces that roughly correspond to these regulations.

On these "photos" we then apply the already known procedures.

We are looking for the face, which in these four cases is roughly "pink". Since

the face colors are nevertheless different, we first perform a color space re-

duction. We find suitable limits of the (here) three intervals by trial and error.

The process is from

the traffic sign recog-

nition in the previous

section. The faces

now stand out very

nicely in orange - re-

gardless of how they

looked before.

Peter

Paul

Mary

Hannah

10 Image Recognition 133

When we erase all the colors except orange, only

the faces remain. We stamp the result on the stage

and let the passport photo disappear. It has done

its duty.

In these faces we now must identify the eyes, the

mouth, the nose, etc. From the ratios of the sizes

eye distance to nose length, mouth width to face

height, ... we can then identify the person.

How to find eyes?

They represent "holes" in the face, which should not be too large and not

too small. For example, the right eye (from the person's point of view)

should be at the top-left of the passport image. To do this, we first need

to be able to access individual pixels in the image. For this purpose, we

use our Laser sprite, which directly provides us

with the color value at its position.

With this, we search the upper-left area of the image for a "hole". We ex-

amine the range -50 < x < -15, 10 < y < 60. We find the values by trial

and error. For the comparisons, we take the green value, and we examine

the range line by line.

We pass over a possibly existing orange area and

stop at the first white pixel.

Then we note the left x-value, count the following

white pixels to the right and note the endpoint.

If the width corresponds to an eye, we determine

the center and measure the number of white pixels

in the vertical there.

If the result is also "correct", we let draw a cross at the position

and return the center point.

10 Image Recognition 134

If we still haven't found an eye,

then we first continue search-

ing to the right. If there was

nothing there either, then we

repeat everything in the next

lines.

The procedure in full is shown

opposite.

10 Image Recognition 135

We find the left eye using the same procedure, and

for the mouth we determine the two corners of the

mouth. The nose we simply draw between the eyes

and mouth.

From the determined values we calculate some ra-

tios and store them together with the names in a

list allAttributes. By comparison with the currently

determined values, the searched person can be

easily identified.

10 Image Recognition 136

The overall problem can be solved by composing the subproblems. We assume that the image of the person

to be identified is on the screen. This is transformed, stamped on the stage and the changes are displayed.

The four people are safely recognized.

10 Image Recognition 137

10.4 Tasks

1. a: Find out about the calculation of the check digit in the EAN-8 code. Use some examples to test

whether you have understood the procedure.

 b: Have the barcode scanner check after each reading process whether the check digit has the correct

value.

 c: Extend the barcode scanner with more capabilities: Codes can also be read "backwards" and there

are also longer codes, e.g. EAN-13.

 d: Extract the manufacturer and product number from the barcodes read. Using appropriate data, in-

dicate the results in plain text: "Honey from the bee house", ...

2. Develop a barcode generator. It is given a sequence of numbers. From this, it calculates the check

digit and prints the barcode. This can be done, for example, with the help of appropriate costumes

that are printed on the stage at the right places with the stamp block from the Pen palette.

3. Have foreign traffic signs identified. Use the signs to determine where a picture was taken.

4. A speed warning system in a car is designed to determine whether the speed limit has been ex-

ceeded based on changing traffic signs.

5. German license plates contain a character set that is very suitable for image recognition (uniform

character width, ...). Develop a method that recognizes license plates. Discuss the consequences.

6. Facial recognition can be found today when logging into a computer system, in cameras and

smartphones, in social networks, ... Learn about other applications and discuss their results.

7. In some states, a system of social credits is being introduced or its introduction is being discussed.

Find out about the system and discuss the consequences in connection with extensive video surveil-

lance.

11 Sounds 138

11 Sounds

Similar to animated graphics, it is somewhat difficult to only describe the handling of sounds. Therefore,

just the different possibilities are presented here - with the urgent recommendation to test and experiment

with the "code snippets", too.

11.1 Find sounds

First, we need a sound in WAV format. For this we can either import it via the

file menu (File → Sounds...) …

… or drag it "from outside" into the Snap! window as usual …

… or simply record it yourself. For short recordings, this can be done directly

using the Snap! sound recorder on the Sounds page. For longer recordings

you should use one of the common tools.

For further processing we load the library Audio Comp

from the file menu. This provides us with the following

blocks from the Sound, Sensing, Pen, and Operators pal-

ettes.

In the following we work with the file sound check.wav,

which we created in one of the described ways.

11 Sounds 139

11.2 Process Sounds

If a sound is available on the Sounds page, it can be displayed in

the corresponding blocks. The easiest way to try this is in the

block for playing sounds.

For further processing we need a representative of our sound.

This is what the sound named <soundname> block is for. If you

edit it, you have found a small example for the use of the sound

blocks.60

The of block for sounds provides access to further properties of

sounds. In particular, its samples61 can be determined as a list.

These are needed if a sound is to be edited actively. For example,

we can influence the playback speed of the sound by changing

the sample rate. The Hz for ...-block creates samples with the

properties to be specified, e.g. "pure sounds".

The visualization of the sounds is interesting. Using the plot

<sound> block we get a graphic of the sample on the stage.

60 The same applies to (almost) all other sound blocks. If you edit them, you will find examples e.g. for the use
of JavaScript.
61 https://de.wikipedia.org/wiki/Abtastrate

11 Sounds 140

11.3 Make Music with Jens Mönig62

Level: high school Materials: Music

A sample consists of a list of numbers, stereo sounds of a two-element list of samples (see above). Conse-

quently, sounds can be manipulated with the usual list operations, e.g. invert, change value, …

But songs can also be composed of notes, even quite com-

fortably. The selection of the note is done on a keyboard

(piano keyboard), which you get when you click on the

play note...for...beats block the little arrow down for the

drop-down menu. From this you can quickly compose

songs ...

... and play them on different instruments and at different

speeds.

If you play several notes in parallel, chords are created

...

… and from these songs, using suitable list of pairs of

(note, duration), …

 … which can be played and varied.

62 Following the example of "music" by Jens Mönig.

11 Sounds 141

specify two basic chords

describe bass accompaniment and

song using lists of tone/duration pairs

make a few presets

play the song,

finish with chord

and short break

and now with variations the song and

the bass accompaniment

play again and again

both play in parallel

because of the launch block

transpose a song

11 Sounds 142

11.4 Project: Hearing Test

Level: from middle school Materials: Hearing volume test

In a hearing test, the hearing ability is

tested at different frequencies or dif-

ferent volumes. In this case, we play

tones of increasing frequency until

the test person hears something.

Then he (or she) presses the space

bar. This frequency min is noted.

Then the frequency is increased until

nothing is heard. This frequency is

also stored. In the current Snap! ver-

sion, the Java-Script extensions in

the Settings menu must be enabled

for this.

Make sure that the volume cannot become too high!

11 Sounds 143

11.5 Tasks

1. Establish experimental conditions in the hearing test that lead to comparable results.

2. Change not only the frequency, but also

the volume. Since our sounds are de-

scribed by samples, the volume can be

changed by simply multiplying the sample

values. (This can be done as in the script or

by applying the multiplication block as a

hyperblock.) For example, in the following

script, the volume is increased until the

spacebar is pressed.

Make sure that the volume cannot become too high!

3. Measure the cutoff frequencies and the volume required per frequency to hear. Create a diagram

from this.

4. Take a trip to an ENT practice/clinic. Present your diagrams and have them explained to you whether

and what can be read from them. Find out about causes of possible hearing loss.

12 Project: Electrons in Fields 144

12 Project: Electrons in Fields

Level: high school Materials: Electrons in fields

We want to use the knowledge we have ac-

quired so far to realize a small project from

the field of - well - physics: Electrons move

in a tube in which a capacitor is built in. This

tube is brought inside a pair of Helmholtz

coils in such a way that the electric and

magnetic fields are orthogonal to each

other. Both are semi-homogeneous. This is

one of the standard high school experi-

ments. All components can be developed

independently in different groups, and in

very different ways. Only the physics re-

mains the same. That's the way it is with

physics.

12.1 The Electron Source and the Experimental Setup

Since this is a standard experiment, the required equipment should be available in the physics collection. It

is therefore a good idea to set up the experiment properly, photograph it and extract the partial devices

from the pictures so that they can be used in the project. Here in the script, only simple drawings were

made instead. We need pictures of the capacitor, the coils, the electron source and - for illustration - the

generated fields.

First of all, let's enlarge the Snap! stage to 800 x 600 pixels. There is a

menu item for this in the settings menu of Snap! Then we draw a simple

picture of an electron source and import it as a costume of the current

sprite.

After starting the program with the green flag, our electron source is

sent to its place in the correct outfit. If necessary, we can also move it

to another place in the experiment. The device has only one character-

istic property: the momentary acceleration voltage of the emitted elec-

trons. For this a local variable Ub is generated and displayed on the

stage. In the context menu of this display slider can be selected and the

minimum and maximum value can be set. The slider is now used to

change the variable value between these numbers while the program is

running. We choose a range between 0 and 250 (volts).

12 Project: Electrons in Fields 145

12.2 The Capacitor and the Electric Field

The capacitor in the tube has a plate spacing d, which we set firmly so that later a useful electron movement

results. After it has also found its place, it runs continuously until the program aborts. If we set the applied

voltage U to zero, it should disappear, so that we can also study movements only in the magnetic field -

there it would only disturb. For U and d we set up local variables. After that, it tells the electric field E-Field

its current value. This is done by setting in the context of the E-field the value of its local variable E with

the value U/d.

Indeed, it is true:
d

U
E =

It is important that the slots in

set <variable> to <value> are blank,

so that they can be replaced by the

specified values!

Then, in the same way, he sets the

ghost effect of the electric field, i.e.

its transparency, to a value that de-

pends on the applied voltage. The

smaller the voltage, the more trans-

parent the arrows symbolizing the

electric field appear.

The electric field, another sprite of its

own, simply consists of a costume

containing a series of parallel arrows

that fit between the capacitor plates.

It has a local variable E, which is set

by the capacitor - as described. We

display the voltage of the capacitor as

a slider variable on the stage.

12 Project: Electrons in Fields 146

12.3 The Helmholtz Coils and the Magnetic Field

The Helmholtz coil pair is symbolized

by a simple circle on the stage.63 It

contains a local variable B, the mag-

netic flux density, which turns out to

be I
A

T
B = 008.0 for commercially

available devices, where I is the elec-

tric current through the coils. We dis-

play it as a slider variable between 0

and 10 (amps). That's pretty power-

ful. The coils, much like the capacitor,

tell the magnetic field what value and

transparency it has. Like the electric

field, the magnetic field consists only

of a picture.

If we switch off the electric field and

consider only the electron orbit in the

magnetic field, we get an approxi-

mately circular orbit, but not a closed

one. The spiral results from calcula-

tion inaccuracies because the calcu-

lated changes are too large. We

would have to proceed much more

small-step. So, this would still have to

be worked on!

63 You can really make this much more beautiful!

12 Project: Electrons in Fields 147

12.4 The Electrons

Now comes the bitter moment when we can no longer avoid physics. So be it.

Two forces act on an electron in the arrangement: the electric and the magnetic. With the electrical one it

is quite simple. It acts upwards here because the electron is charged negative: EeF ye =,

The Lorenz force BvqFL

= is orthogonal to the current velocity of the electron and to the field direc-

tion. So, we have to work with vectors. The magnetic field has only one component in z-direction, i.e. "into

the screen", the velocity has two components in x and y-direction "on the screen".

So, it is valid:

−

=

=

0

0

0

0

Bv

Bv

e

B

v

v

eF x

y

y

x

L

In summary:

−

=

0

BvE

Bv

eF x

y

gesamt

 , and because is true: amF

=

we obtain for the accelerations in the two directions:

Bv
m

e
a yx = und)(BvE

m

e
a xy −=

with the appropriate signs to the coordinate directions of Snap!. These accelerations change the velocity

components and these in turn change the position of the electron. That's it.

We can transfer these results directly into the script of the electron. We adjust the natural constant e/m a

little bit for this, because "real" electrons are significantly faster than our screen representatives. Other

adjustments are not necessary. So, the electron needs only the "too large" chosen local variable e/m and

the acceleration and velocity components. To make it easier to follow the trajectory, it is drawn on the

stage.

total

12 Project: Electrons in Fields 148

One can observe the some-

times astonishing movements

of the particles now nicely. Of

course, we must ask what is

true and what is due to numer-

ical effects. Projects never end,

they give impulses for further

questions!

13 Texts and Related Topics 149

13 Texts and Related Topics

13.1 Operations on Strings

Level: from middle school Materials: Stringoperations

Like its predecessors, Snap! includes a minimized set of methods that work

with strings. These include

• join <string1> <string2>… : the operator for concatenation of multi-

ple strings. The result is a new string. The

operator can be extended with further ar-

guments using the arrow keys.64

• split <string> by <char> : the operator for splitting a string into a

list. The splits are done at the specified characters, typically spaces.63

• letter <n> of <string> : returns the nth character of a string.

• length of text <string> : returns the length of a string.

• unicode of <char> : returns the Unicode of a character.

• unicode <n> as letter : returns the nth Unicode character.

Other string operations are located in the libraries.

They can be imported via the File menu. The new

blocks are then located under the Make a block

button in the Operators palette.

We want to take a different approach here by building any needed

methods from the basic operations. First, we want to write a method

rest of <text> from <index> that returns the rest of a string starting at

a certain index. So, we create a new block, this time assigning it to the

Operators palette so that it appears nice and green with the string op-

erators. Since this is a function, we check "reporter", and because of

course we want others to benefit from our work, we leave it at "for all

sprites". We can insert the parameters at the + signs between the words

of the method header, as already described several times. We specify

the type as text or number and set the parameter index to the default

value 1. Both will be displayed in the method header as index # = 1.

64 The block can additionally perform operations with other data types (see there).

13 Texts and Related Topics 150

In the script we copy all characters of the text from

the index value into a string variable result. We re-

turn this as a function result using the report block.

To make the whole thing nice and fast, we wrap it

in a warp block.

In a very similar way, the function first part

of <text> to <index> returns the beginning

of a string.

With both functions it is easy to get a snippet from

a string.

And the position of a substring in another string can

also be determined - nicely recursively. If it is not

present, then 0 is returned.

13 Texts and Related Topics 151

This makes it easy to perform standard operations

such as replacing in strings.

So that we can delight mankind with these new opportunities,

we export the created blocks to a library. To do this, we select

Export blocks ... in the file menu and then select the blocks to be

exported - all of them, of course! We get a file Stringoperations

blocks.xml, which we save in a suitable place. If necessary, we

can load the blocks into other projects via the file menu.

13 Texts and Related Topics 152

13.2 Vigenère-Encryption

Level: high school Materials: Vigenère encryption

Vigenère encryption is an extension of Caesar encryption in which each character of the plaintext is shifted

by a number in Unicode derived from a key character. Usually, the key is shorter than the text to be en-

crypted, so you simply extend the key until it is at least as long as the plaintext.

Example: Plain text: THISISAFULLYSECRETTEXT

 Key: NOTHING

 Extended key: NOTHINGNOTHINGNOTHING

Thus, the first character of the plaintext (T) is shifted by 14 characters (N is the 14th character), the second

character (H) by 15, the third (I) by 20, and so on. If characters larger than Z are obtained, then the charac-

ters are shifted cyclically starting at A - as usual in Caesar encryption.

We write a small script that specifies the key and

the plaintext and lets us determine the ciphertext

using a function. So only the encryption method is

interesting.

Since we are working with the character codes, we

need the two blocks from the Operators palette:

unicode of <…> and unicode <…> as letter.

First of all, we want to be able to convert codes

from the lowercase range (97 ... 122) to uppercase

codes when needed. This is done by subtracting the

value 32 from the character code if necessary. Then

we generate a list of character codes from the

passed plaintext, a character string, which is to be

called textcodes. A list is created from a string by

applying the split ... by ... block. We pass the code

of this function to the map <function code> over

<list> block, which can be recognized by the gray ring around the function block. That is, the function is not

executed first, as usual, and then its result is passed, but the program code of this function is passed to be

executed in the map-over block. In this case, the "mapped" function consists of first determining the

Unicode of a character and then passing it through the code in capitals function. From this list, we still

throw out any invalid codes with a value less than

1. We store the code lists of plaintext and key in the

variables textcodes and keycodes respectively.

13 Texts and Related Topics 153

Next, we extend the keycodes list by the codes of

the key until the list is at least as long as the

textcodes list. This is done here by doubling the

keycodes list using the append block each time.

Now we just have to apply the Vigen-

ére procedure, in this case only to the

codes of the letters. Instead of "map-

ping" a function, this time we use the

for loop.

With their help we go through all

characters of the textcodes list and

encode them as specified.

The complete process:

13 Texts and Related Topics 154

13.3 DNA-Sequencing65

Level: high school Materials: DNA analysis

In bioinformatics, partial sequences are extracted from a broth of biomolecules con-

taining fragments of DNA chains. From these, the entire DNA is reassembled. Here,

we use a highly simplified model in which the partial fragments are represented by

strings consisting of the characters A, C, G, and T. The partial fragments are then

reassembled. The fragments "overlap" partially, so that the original DNA can be re-

constructed from matches at the chain ends.

First, we need "DNA". Sequences can be found on the Internet. But since the mean-

ing of the sequence is not important here, we simply generate it randomly. The

product, a long string, we chop up, i.e. we split it into pieces of different length,

which partly overlap. We accomplish this task by inserting a piece of the end of the predecessor at the front

of a chunk. In the first section, this piece is empty. We use the string library that we created in chapter 13.1.

The sections are still in the correct order, so reconstruction

would not be a problem. We change that by mixing up the

order.

65 A short description can be found e.g. under http://molgen.biologie.uni-mainz.de/Downloads/PDFs/Ge-
nomforsch/Modul10B_Skript2015-Hankeln.pdf. Picture from https://de.wikipedia.org/wiki/Desoxyribo-
nukleinsäure

DNA-Helix

http://molgen.biologie.uni-mainz.de/Downloads/PDFs/Genomforsch/Modul10B_Skript2015-Hankeln.pdf
http://molgen.biologie.uni-mainz.de/Downloads/PDFs/Genomforsch/Modul10B_Skript2015-Hankeln.pdf
https://de.wikipedia.org/

13 Texts and Related Topics 155

We then use the following command sequence to

obtain the "soup" of DNA pieces we are looking for.

To reconstruct the original DNA from this, we need

to determine which fragments were once con-

nected. We create a list called connections, in

which we enter the predecessors and the length of

the overlap. Since the first fragment has no prede-

cessor, its overlap length is zero.

One piece of DNA was "attached" to another if a

sufficiently long overlap can be found. Since simi-

larities can also be random, we define "suffi-

ciently long" as "5". For a given sequence, there

are four ways to "guess" the correct character for

each place. So, the probability of generating the

character correctly by chance is 0.25. For five

characters it is then 0.255 = 0.00098. This is suf-

ficiently "unlikely" for us.

So, the only remaining

problem is to determine

whether and if so, how far

two DNA sequences over-

lap. We place them (men-

tally) on top of each other

from the middle of the first

one and then move the sec-

ond one step by step "to

the right" until we either

detect an overlap or until

we are too close to the end

of it.

13 Texts and Related Topics 156

Now we should be able to reconstruct the original

DNA from the list of connections. We do this by

searching through the list of connections, starting

with the value 0 of the first piece. To do this, we

search the connections for the element whose first

entry corresponds to the value n. We return this in-

dex if necessary. We return this index if necessary.

Once we have found a piece of DNA, we append it

to the previous finds and continue searching. The

process ends when we get a zero as continuation

index. Then we are either finished or an error has

crept in during the search for overlaps. With the

short overlap length, this happens sometimes.

Finally, we check whether the DNA reconstruction was successful. The reconstructed DNA should already

be approximately as long as the original - and of course it should also match the original in this area.

It does - most of the time.

13 Texts and Related Topics 157

13.4 Text Files, Server, and Frequency Analysis

Level: high school Materials: Textfiles server and frequency analysis

From obscure sources we have received the information that there is an in-

credibly secret text in the ciphertext.txt file on our computer. We even learn

in which directory it is located. To be able to edit the text from Snap! we cre-

ate a variable ciphertext and display it on the stage. As content it shows the

zero. We select import... from the context menu of the displayed variable, nav-

igate to the named directory and select the secret text. It appears in the vari-

able.

To be on the safe side, we want to save the text at another place immediately. We select the item export...

from the same context menu and get the file ciphertext.txt at the bottom-left of the window, like saving a

project. We can find it in the download directory of our computer. The described procedure is simple; how-

ever, it cannot be controlled by the program, but is executed "by hand".66

Text files are a simple but reliable tool to exchange data between different computers. For

this to work, we need an http server (which may be the same computer if necessary) run-

ning a script that has the desired functionality - here: loading and saving text files. In this

case we want to choose the server snapextensions.uni-goettingen.de, where the script

handleTextfile.php is located. We draw two costumes for a text server sprite, indicating

whether we are connected to the server - or not. The data exchange with the server should

be logged in a variable infobox. By clicking the green flag our variables shall be initialized,

where the one named connection gets a rather cryptic value.

This consists of the server address, a login script and some varia-

bles - just PHP. We change our info box to "table view" using the

context menu, which looks a bit better. The output window looks

like this:

66 But in the library SciScap! you can find corresponding blocks.

13 Texts and Related Topics 158

We need a connection to the server. This is done

using the url block, to which we pass the required

data. We log the success or failure in the info box.

After executing this block, the connection to the server is estab-

lished, but the text in our info box is only partially visible. We

therefore click with the left mouse button on the column heading

items and drag the column in width until all text is readable.

We want to write data to a file on the

server. We specify the text to be written

and the file name as parameters. First,

we append the extension ".txt" to the

file name if necessary and make sure

that the file is stored in the subdirectory

textfiles on the server. Then the url

block passes the required data.

Reading from a file is done accordingly.

We export the text server sprite to an

XML file and can thus use its functionality

in other projects as well.

13 Texts and Related Topics 159

After a connection setup,

a write and a read opera-

tion, our workspace looks

something like this:

It doesn't help, we now have to decode the ciphertext. To do this, we perform a frequency analysis - i.e. we

count how often the individual letters occur in a text. We can see from the ratios of the first three most

common characters that this is a German text.

Since in German the E is the most frequent letter and it would be mean if the text

had been written in another language, we store the list of frequencies in a variable

frequencies.

Then we try to replace the capital T in the ciphertext with a lowercase e - because T is the most common.

Our replace block is really not meant for so many replacements, so we quickly write a new one. In this new

block, we distinguish between upper and lower case in text comparisons and therefore use the Unicodes

of the characters.

13 Texts and Related Topics 160

Because the result is not too impressive, we need

more substitutions. We assume an n behind the G

and also perform this substitution.

We can look at the ciphertext quite well if we break

it down into lines with.

For example, we find words like eEn in line 2. We therefore consider the E to be an i.

That was a good idea! Let's keep searching and trying substitutions, then we'll eventually find the secret!

You just have to persevere - there are only 23 letters left!

13 Texts and Related Topics 161

13.5 SQL-Databases

Level: from middle school

Materials: SQL, SQL example

An important IT system task is the access to external data sources. On the one hand, the Internet is available

for this purpose, and on the other hand, the use of SQL databases is common. Since the use of this type of

application is somewhat complicated in many computer languages, it is often treated separately from algo-

rithmics. This makes this subfield of computer science rather boring: you create ER diagrams on paper or

query databases with special client applications, e.g. PHPmyAdmin, but you don't exploit the results fur-

ther. With the help of Snap! this can be done differently!

Again, we need a server running either on another computer or also on our own, and on which - in this case

- in addition to an http server and an SQL server67, there is a PHP script called mysqlquery.php, to which

we send the data required for an SQL query for the SQL server using the parameters type, query, com-

mand, The result of the query is then either an error message or a table with results. If necessary, the

script prepares this table so that Snap! can display it as a list. The source code of this script can be found

e.g. on https://snapextensions.uni-goettingen.de.

Similar to the last section, we create a sprite called SQLserver, which indi-

cates by its costume if there is a connection to the database. Some attributes

like connection, connected, current table, etc. store the current state, and a

variable infobox logs what is happening. This sprite is saved as SQLserver

and can be loaded when needed.

The new blocks necessary for SQL queries are declared globally so that they

are easily accessible for queries outside the server sprite. They are stored in

the SQL blocks.xml file and must be loaded additionally. Since this is a com-

pletely different category of blocks than the ones present in the standard pal-

ettes, we give the system a new palette called SQL, in which we place the SQL

blocks.

67 The project „In the supermarket “ also uses a SQLite-Server.

https://snapextensions.uni-goettingen.de/

13 Texts and Related Topics 162

First of all, we need an access

to the external SQL server.

For this we set up a block

connect. There, the local at-

tributes are initialized, and

the connection data is stored

in the variable connection

so that it does not have to be

reentered each time. Then

the connection is established

and the success or failure is

noted in the variable

connected.

The reporter block read databases is used to

ask the SQL server for the existing databases.

These are returned as a list. For the actual query,

only the value "getDBs" must be appended to

the connection data as "type".

The connection establishment and the selection

of a database can be saved as a block sequence.

The last block selects the specified database. In-

teresting is the small arrow next to the parame-

ter. If you click on it, a selection list with the pos-

sible values appears.

13 Texts and Related Topics 163

A selection list can be created in the block editor by right-clicking in the dark area. You

will then get a small context menu with the item options... In the pop-up window Input

Slot Options the possible input options are entered.

In a very similar way, for the selected database it is deter-

mined which tables it contains and from which attributes

the tables are constructed.

Thus, with the help of the new blocks we

can find out which tables are present and

what attributes they contain. In the context

menu of the obtained list, the result can be

permanently displayed using the "open in

dialog" option. This way we can clearly ar-

range on the screen the values needed for

queries.

We have now created the prerequisites for issuing queries to the data-

base. For this we still need SQL aggregate functions and operators. These

can be used to interactively compose SQL queries using the data from the

"Table views" and two types of SELECT blocks.

13 Texts and Related Topics 164

It should be noted that only the texts of the queries are gener-

ated by the blocks! The queries are not (yet) executed.

These blocks can now be used to create - and control - SELECT queries.

For the execution of such queries,

we have one - last - block available.

An SQL command is passed to this

block either as text or as the result

of a SELECT block. In the obtained

response list, any empty entries are

deleted.

The simple SELECT block assembles an SQL

query from the parameters. It uses a re-

porter List → string for this.

With this we can start a first attempt:

13 Texts and Related Topics 165

With the full SELECT block it is not more complicated - only longer.

13 Texts and Related Topics 166

We can now work with this: How many people speak which language?

Amazing!

The resulting SQL library is intended for testing SQL commands interactively and then - if successful - incor-

porating them into new blocks that allow the database to be used without SQL knowledge. We illustrate

this with a simple query.

For a new project, we first import the SQL

blocks library, then the SQL server sprite.

In addition, we create an SQL user sprite.

This then asks the SQL server to establish a

connection.

After that, query blocks can be cre-

ated, which e.g. determine the data

important for school statistics.

These can then be used for special purposes.

13 Texts and Related Topics 167

13.6 Tasks

1. A simple form of block ciphering is to insert the text to be encoded into a table with several columns

from left to right and from top to bottom. If the last row is not filled, then any characters are inserted.

The encrypted text is obtained by reading the table from top to bottom and from left to right.

 Example:

 THIST → TEIRLRHXSEYEITIDSTSINIEXTSCBCX

 EXTIS

 ISINC

 REDIB

 LYSEC

 RETXX

 What is the key? Realize the procedure.

3. Genetic algorithms simulate nature's evolutionary process by randomly generating new candidates

to solve a problem again and again. In this case, palindromes are sought, words that are the same

when read forwards and backwards. The procedure consists of an initialization in which a random

initial population is generated. In this case, a set of random words. Then a loop is run over and over

again in which candidates for recombination of individuals are selected based on a fitness function.

From two candidates (at least) one new one is generated. Afterwards random changes (mutations)

take place. In the resulting new generation, the "best" candidates are selected for the next run on

the basis of the fitness function (selection).

4. The determination of the Levenshtein distance between two character strings is used to determine

the "degree of relationship" of the character strings. Typically, these are DNA strands from the char-

acters A, C, G and T.

 a: Find out about the process.

 b: Realize the procedure.

14 Computer Algebra: Functional Programming 168

14 Computer Algebra: Functional Programming

Level: high school Materials: Computer algebra

14.1 Function Terms

We want to develop a small "Computer Algebra System" (CAS), which on the one hand illustrates the

top-down method and on the other hand shows how to program functionally with Snap! For this we have

to define what we want to understand by function terms e.g. via syntax diagrams.

Term:

Product:

Sum:

Summand:

Number:

Potency:

Function terms are therefore e.g.: 3 4x (2x-1)(x^2+2) (x)(x^2)(1-2x^4)

…

Sum

Product

Summand

+

-

Number

Potency

Sum ()

1 0 9 …

Number

x

^ Number

14 Computer Algebra: Functional Programming 169

14.2 Parse Function Terms

To work with function terms, of course, we need someone who

knows something about them. We therefore draw Gundolf de

Jong, a talented young mathematician, and then make him

smart. First of all, Gundolf has to be able to read in function

terms. To do this, he asks the user for an appropriate input us-

ing the block ask <question> and wait from the Sensing pal-

ette. We don't use the simple form here, where something al-

ways must be entered, but we pass a selection list, from which

one of the options is chosen by a mouse click.

We move the whole thing to a method of

Gundolf, which we define as a function. So,

we select the oval block shape in the block

editor. If we have declared a variable, e.g.

named term, then we can assign the result of

the input to it.

Next, we verify that the input is correct. We move the corresponding methods into a sprite called Parser.

In this sprite we want to program functionally on the one hand, but on the other hand we want to solve the

problem in a top-down way.

We create the global block (for all sprites) is <term> a correct term? as a predicate, which accordingly

can only return the results true or false. After that we have a nice title, but unfortunately no content yet.

Nevertheless, we can already use the block in scripts - just like other blocks. On the one hand this allows

recursive operations, on the other hand it is suitable for top-down development. Since according to the

syntax diagrams correct terms are either sums or prod-

ucts, we move the problem there by creating two corre-

sponding predicates - still empty - locally (for this sprite

only), because the rest of the problem is none of the busi-

ness of external observers.

Snap! now evaluates logical expres-

sions "lazy": the second expression is

evaluated only if the first one does not

already determine the result. We can

therefore specify the predicate is

<term> a correct term? completely

with empty block hulls.

We continue this procedure for all elements of the language

definition. The sum consists of either a single summand or a

summand followed by the correct operator (+/-) and a sum. We

can write this down directly if we have a predicate is <term> a

summand? that is empty for now.

Sum

Product

14 Computer Algebra: Functional Programming 170

We have to be careful that our terms - strings - are not accidentally interpreted as numbers. For this reason,

we have always set the type of the input parameter term to "Text". If we forget this, then the string "123",

for example, could be interpreted as the number 123. The second element of the string is e.g. a 2, but

there is no second element in the number 123. A corresponding access would lead to an error.

We need one more thing. The entered term is no longer examined as a whole, but we may have to split it

into two parts: the first part of <term> to <char> and the rest of <term> from <char>. In addition, there

is the determination of the position of a character in a string: position of <char> in <term>. In this case,

we want to implement them as JavaScript methods, because time matters a bit.68

With this we write the predicate is <term> a

summand? - with an additional security check.

68 For this, JavaScript usage must be explicitly allowed in the Settings menu.

14 Computer Algebra: Functional Programming 171

And now we can finally create the predicate is <term> a sum?.

We are nearing the end. is <term> a number? is very easy to write if you know is <term> a cipher?:

And how do you check a potency? This is also in the syntax diagram - we just have to copy all possibilities

(see next page).

All that is missing now is the product, which can be formulated in direct analogy to the sum, because a

product consists of either a parenthesized sum or one followed by a product.

 Summand

+

-

Sum ()

14 Computer Algebra: Functional Programming 172

We can use it to check ("parse") whether a term entered corresponds to the selected syntax. If this is the

case, we can continue working with it. Our mathematician Gundolf asks the Parser here.

He of course wraps this query in its own block to make

it appear that he himself could answer such a question.

Number

x

^ Number

14 Computer Algebra: Functional Programming 173

14.3 Derive Function Terms

We want to determine the first derivative

of correct function terms. We collect the

necessary methods from the Parser. Since

there are only two possibilities for the inner

construction of terms, the first approach is

simple.

When applying the rule for sums, we have

to determine the summands and derive

them. Because we have defined numbers

without a sign, we treat this separately in

each case, i.e. we add a "+" if necessary and

then split off the sign again. Subsequently,

the different possibilities are treated ac-

cording to the rules of mathematics.

14 Computer Algebra: Functional Programming 174

Deriving individual summands

is not particularly difficult.

Numbers result in zero.

The derivative of x is one.

The derivative of x^2 is 2x,

otherwise, we get n*x^(n-1).

Accordingly, a factor before x

is considered.

The only thing missing is the

rule for products. We can

simply write it down - adding

some brackets.

14 Computer Algebra: Functional Programming 175

The result is even quite readable:

Note that the derivatives do not necessarily correspond to our highly simplified definition of function terms

and therefore often cannot be "processed" further.

14 Computer Algebra: Functional Programming 176

14.4 Calculate Function Values and Draw Graphs

If we can parse function values, then of course we can calculate them. The procedure is quite similar to

parsing, and it is made much easier if we already know that the entered term is correct. We leave this work

to Gundolf, who was actually quite useless up to now - except for the self-representation. As a mathemati-

cian he should be able to calculate!

We want to calculate function values and then draw the graphs of the function and its first derivative. For

this Gundolf must be able to draw at least a graph.

In these scripts all

blocks are already

present - except of

one. The calcula-

tion of a function

term at the position

x is still missing. We

give the corre-

sponding scripts

without comments

because they are

very similar to

those of the parser.

14 Computer Algebra: Functional Programming 177

14 Computer Algebra: Functional Programming 178

With their help Gundolf can shine now:

14 Computer Algebra: Functional Programming 179

14.5 Tasks

1. a: Make the outputs a little more readable.

 b: Combine results in the derivation so that they correspond to the given syntax and the graph can be

drawn.

2. a: Define signed numbers and change the processing of the terms accordingly.

 b: Proceed accordingly for floating point numbers (numbers with decimal points).

3. a: Define advanced function terms, which can contain quotients, using syntax diagrams.

 b: Enable parsing of these function terms by writing appropriate predicates.

 c: Form derivatives by implementing the quotient rule as a string operation.

4. Perform task 3 accordingly for trigonometric functions.

5. Allow function terms that require the use of the chain rule. Implement appropriate predicates and

string functions.

6. a: Let the graphs of the other function types draw after they have been parsed.

 b: Allow a selection of the graphs to be drawn (function, first and second derivation).

7. Introduce a "function calculator": a function term is entered first. If this is correct, values can be

entered repeatedly, and the corresponding values are determined.

15 Artificial Plants: L-Systems 180

15 Artificial Plants: L-Systems

Level: high school Materials: L-systems

15.1 L-Systems

In systems according to Aristid Lindenmayer69, plants are described by a rule system that generates the

drawing instruction for a turtle from an axiom, a first character, by substitutions. One can imagine it in such

a way that - starting from a shoot - the plant is drawn up to the next branching. Its position is stored on a

stack, then the branches are described one after the other, returning to the branching after each branch.

The turtle can only move forwards (F) and rotate through a fixed angle (+ and -). Saving the turtle position

and direction and restoring this state is symbolized by square brackets ([and]). A simple plant with a triple

branching can be described by

Axiom: X Rule: X → F[-X][+X]FX

If this rule is applied several times, then the plant can grow at the positions where an X has been

inserted. So that the older parts of the plant grow along, a rule F → FF is often inserted.

69 https://de.wikipedia.org/wiki/Lindenmayer-System

15 Artificial Plants: L-Systems 181

15.2 Create the Drawing Instruction

First of all, we need a rule system, i.e. a list variable rules, to

which the desired rules are added line by line as character strings.

The character to be replaced is at the very beginning, followed

by "->" and the replacement starting with character 4. The re-

cursion depth, the given angle, and the length of the line length

(for F) are also assigned to variables.

When generating the drawing in-

struction, we start with the axiom

X. Then we create an auxiliary

string h in which the replacements

are performed per pass: whenever

a character to be replaced is found

in the old drawing instruction, we

append the substitution to h. Fi-

nally, h replaces the drawing in-

struction, and the next replace-

ment pass is started. The result

can become quite long!

15.3 The Stack Operations

As a stack for storing the turtle positions

we use a simple list. Operations are exe-

cuted only at the beginning of the list -

already we have a stack. The storing is

usually done by an operation push. We

store a three-element list with x- and y-

position and the current direction. By

pull the last stored position is retrieved

and removed from the list.

15 Artificial Plants: L-Systems 182

15.4 Drawing the Plants

Drawing the plants is very easy, since all

our sprites can be used as turtles. We

enlarge our stage to 500x500 (select

stage size... in the settings menu) and let

the Turtle draw the "foot" on which the

plant grows. We then step through the

string of drawing instructions one char-

acter at a time, performing the appro-

priate Turtle operation or stack opera-

tion for each character. As a little gim-

mick, we draw the "tips" of the plant in

green. (Tips can be recognized by the

fact that the next step is to go back to

the last turtle position, i.e. a pull opera-

tion follows).

Examples:

15 Artificial Plants: L-Systems 183

15.5 Tasks

1. a: Search the web for grammars for L-systems. Create the appropriate plants.

 b: Select a plant species, e.g. a certain tree species, and study its construction thoroughly using pic-

tures. Pay particular attention to growth areas. Then describe their structure using an L-system

grammar. Check the result using the program.

2. a: Why are the grammars considered so far "context-free"? What does this mean for the plants pro-

duced??

 b: Check the web to see if grammars other than context-free are used to describe artificial plants. If

yes: why actually?

3. a: In the program the tips of the branches (as "leaves") were dyed green. Replace these green pieces

with more beautiful leaves.

 b: Transfer the principle to drawing the thickness of the branches. Just come up with something!

4. Plants don't always grow the same: there are storms, raging children, hobby gardeners, weather

disasters, ... Bring some randomness into play to produce differently shaped plants of the same type.

5. a: The stack operations were always performed at the top of the list. Could one also take the end? If

yes: why?

 b: Would something change if you insert at the beginning of the stack and remove the positions at the

end? If yes: why?

6. The users of the L-system program can enter anything else as grammar. Check their entries with a

parser before trying to create the plant.

7. a: How would the rules for L-systems be changed if we wanted to create three-dimensional plants?

What did this mean for the drawing of the plants? Are there turtles for three-dimensional drawing?

 b: Find out about topics where artificial plants are used on the net.

8. Do they also draw artificial animals? Artificial people? If yes: where? How do they do that?

16 Automata 184

16 Automata

16.1 Correct Mail Addresses

Level: from middle school Materials: Email addresses

We want to use a finite automaton to check whether a mail address is correct. To do this, of course, we first

need to know what "correct" means. We give a syntax diagram:

Mail address:

In this simplified form, the usernames thus consist of the characters a and 1 (as substitutes for letters and

special characters) in mixed order, then the usual @ follows. The mail server name consists only of bs, and

- separated by the dot - de follows as the domain name.

Correct email addresses are e.g. a@b.de a1a@bbb.de, wrong would be e.g. 1@c.com.

Translated into a finite automaton, we obtain its state diagram (the input characters are enumerated on

the edges of the graph with spaces as separators):

The translation into a Snap! script can well be done as a predicate because the response of the automaton

is true (the final state se was reached) or false (another state was reached, typically the error state sf). In

the script the checked address is stepped through character by character. Starting from the initial state s0,

it is checked whether the current character is valid. If this is the case, then the script switches to the next

state specified in the state diagram, otherwise it switches to the error state. The script is quite long, but

consists only of nested alternatives, which are a direct translation of the state diagram.

a

1

@ b . d e

a 1 @ b . d e

a 1 @ b . d e
a 1 @ b . e

a 1 @ b . e

a 1 @ d e

a 1 @ . d e

b . d e @ b . d e

a 1

a 1
s0 s1

@
s2

b
s3

b

.
s4

d
s5

e
se

sf

16 Automata 185

When checking the mail addresses, the created predicate can

then be used.

16 Automata 186

16.2 Hyphenation: Kevin Speaks70

Level: high school Materials: Kevin speaks

Mealy automata can be used to im-

plement simple hyphenation, which

works surprisingly well. In addition,

we want to get the sprite Kevin to

pronounce the words we input. The

second sounds harder than it is: if we

have the syllables, then for each sylla-

ble we can create an image with the

mouth position whose name corre-

sponds to the syllable (e.g. AU.png)

and record the spoken syllable to it

(e.g. as AU.wav). We drag these files

to the Costumes and Sounds areas

of Snap! and call them from there.

We start from the very simple Mealy

automaton shown here. Its input al-

phabet consists of vowels (v), conso-

nants (k) and other separators (t). It

inserts some hyphenation characters,

but of course it works incompletely

and partly wrong. It separates the

character strings vkv into v-kv and

vkkv into vk-kv.

Using ask and wait, we enter words,

which will then be hyphenated. Since

users of programs never follow the

guidelines, we first make sure that

only uppercase letters appear in the word. To do this, we must be able to convert at least a single character

to uppercase if necessary. We have already written the function for this in the Vigenère encoding, as well

as the one for the conversion of whole words.

A word transformed into uppercase can be similarly transformed into a sequence of the characters v, k and

t. The vowels are very easy to find, the consonants are letters that are not vowels, and the rest are treated

as separators. For practical reasons, a t character is added last. Thus, there is always at least one character

- and we always reach the state 0 last in the automaton.

70 Based on an idea of Wilfrid Herget.

16 Automata 187

Now we hyphenate. We read character by character of the se-

quence from the characters v, k and t and write down our autom-

aton: Depending on the state, we specify which next state is

taken and which characters are output.

Finally, we have to transform the vkt sequence back into the orig-

inal characters - with the separators in between. To do this, we

run through the vkt sequence with the separators (index: i) as a

template and build the result sequence from the characters of

the entered word (index j). However, we change j only if i does

not point to a separator (-) in the pattern.

16 Automata 188

We can now use these blocks step by step to hyphenate a word:

And of course, we can combine such sequences of statements in a new block.

The words broken down into syllables are to be pronounced by the computer, similar

to navigation systems, automatic time announcements or other "computer voices". If

we store syllables instead of whole words, we need much less memory, because the

syllables can be used several times. (But it does not make it more beautiful!).

First, we choose some words: e.g. autobahn, autonomous, automaton, pronoun, pro-

mille, camomile, camel, cactus. We record their syllables in the recorder of the

Sounds section and change their name to the syllable's name in capital letters.

Since the entered words were provided with separators (see

above), we get (roughly) the syllables when we "split" the

word. For this purpose, Snap! provides the split by command.

The block generates a list of word parts. If we enter AU-

TO-BAHN and hyphenate at the

"-" character, we get:

Since our sound files are named the same as the syllables, we can play them with play

sound until done by choosing the syllable as input parameter of the block.

So, we can make the computer speak out words by

• hyphenate the word entered,

• and break it down into its syllables,

• and have the syllables of this list "pronounced" one after the other.

16 Automata 189

For each of the different syllables we draw a costume for Kevin.

 AU TO BAHN

We display these costumes while speaking the syllables.

Words are pronounced by calling this script with the corresponding syllables.

16 Automata 190

16.3 Coupled Turing Machines 71

Level: high school Materials: Coupled Turing adder

If one describes Turing machines by state graphs, then the importance assigned to this model seems to be

strongly exaggerated to the learners, because the problems, which can be described by a still readable

graph, are then nevertheless rather small. Much more powerful tools can be generated in the model of

coupled Turing machines, where the initial state of the next machine corresponds to the final state of its

predecessor. From very simple systems, increasingly powerful constructions can be created. A kind of

macro-language emerges, in which topics of computability and decidability can be formulated, but above

all can be experienced enactively.

Our system of elementary Turing machines works on a Turing tape which contains only ones and zeros.

The zeros serve as separators, so that numbers are to be represented by sequences of ones. The number n

is coded accordingly by n+1 ones, so that also the zero has a code. In the standard position, the head of

the Turing machine is above the one furthest to the right. All groups of ones must be separated by exactly

one zero and there are two zeros at the left edge of the tape. After working, the machine is again in the

standard position. From this position the next machine starts its work.

The 1- and 0-machines are available as elementary machines, which write the corresponding character

on the tape at the head position. Apart from that, they do nothing. The small left machine l shifts the head

of the Turing machine one position to the left, the small right machine r to the right. In addition, there is a

checking machine p, which checks which character is present at the current head position. Depending on

the result, it branches into one of two states, to which further machines can then be coupled. That was it.

Because they are often needed, we design two new machines, the large left-hand machine L, which runs

to the left across a group of ones, and correspondingly a large right-hand machine R. These can be im-

plemented as follows.:

L: R:

The copying machine K1 copies a group of ones to the right.

K1:

If the copying machine K2 copies a group of ones over a second one to the right, then we can already

calculate sums with the help of a Turing adder A.

A: K2 K2 L 1 R l 0 l 0 l

Try it for yourself!

71 based on Eckart Modrow, Theoretische Informatik mit Delphi, emu-online, 2005

l p
0

1

r p
0

1

 p 0 R R 1 L L 1 l
1

0

R R l

16 Automata 191

Instead of testing the machines on paper, we want to develop

a macro language that can be used to generate our coupled Tu-

ring machines. Since we only want to use new Turing blocks

to be developed, we introduce a new category for this - in taste-

ful pink.

For the simulation of the machines, we need a working tape,

which is built from ones and zeros. We choose a list called tape

for this, since it can be easily changed in length. For the display, we create some images with ones

and zeros of different sizes, using the yellow versions to indicate the head position (pos). The

working speed and the cell size (cell type) should be changeable on the screen. Altogether we

need the variables tape, max tape length, pos, cell type und pause(ms).

The initial caption must be requested

and then a corresponding band must

be generated and displayed. We do

this by splitting the input string char-

acter by character into a list. In front

we append the required two zeros,

and we fill up the band with zeros up

to the maximum length, if necessary.

On this tape, the standard position

must be taken, determining the value

of the variable pos, which indicates

the position of the head. We search,

starting from the right, the first one.

16 Automata 192

Then the tape is

displayed by stam-

ping images of the

costumes side by

side on the stage.

To display the

head position, we

calculate its screen

coordinates and

change to one of

the yellow cos-

tumes.

In total we get as start command sequence:

The elementary machines can now be created quickly:

16 Automata 193

The generation of the test machine p is somewhat

more complicated because this must be able to ex-

ecute two different scripts - depending on the tape

labeling. These scripts must not be evaluated

BEFORE the call of the machine as parameters, but

two scripts are passed, which are to be executed

AFTER the call depending on the tape label. The

"parameter values" are therefore scripts. When

typing the parameters, we select Command (C-

shape) to prevent evaluation. The parameters are

marked as scripts by a .

The downward arrows after the zero or the one can

be found in the selection list that appears behind

the small arrow after the name of "Title text" pa-

rameters.

The new block, a control structure,

then has the following appearance:

We now want to build our coupled Tu-

ring machines from these new blocks.

In order not to be tempted to use the

standard blocks, we right-click on a

palette (hide blocks...) and select all

blocks except our new ones. The

standard palettes are then empty.

16 Automata 194

With these machines, the others can be developed "quite normally recursively" in Snap! as blocks.

The work of the machines can be followed on the screen at different speeds and thus checked. Afterwards

they are used as new blocks for more complex problems.

16 Automata 195

16.4 Cellular Automata: Iterated Prisoner's Dilemma72

Level: high school Materials: Cellular automaton

We want to build a cellular automaton based on the Prisoner's Dilemma73, but slightly modified for trading

on the Internet. The behavior of the trading partners is simulated by automata, which sit on a grid closed

in both dimensions and trade with the partners within a Von Neumann neighborhood74. They exchange

goods for money - as is common on the Internet. There are different types of business partners:

• Naive always cooperate, i.e. provide the correct equivalent value.

• Fraudsters never cooperate.

• Shrewd people cooperate at first and then react in the same way as their partner did last time.

We describe the behavior of trading partners using state diagrams:

K: cooperate

B: cheat

If we arrange such automatons in a grid, distribute them randomly and color them according to their state

(green as "naive", red as "fraudster" or yellow as "shrewd"), we get an image similar to the following:

72 based on Eckart Modrow, Zelluläre Automaten, LOG IN 127 (2004)
73 https://de.wikipedia.org/wiki/Gefangenendilemma
74 https://de.wikipedia.org/wiki/Von-Neumann-Nachbarschaft

K,K v B,K

K

The "naive"

K,B v B,B

B

The "fraudster"

B,K

K,K

K

The "shrewd"

K,B

B,B

B

16 Automata 196

The further procedure is simple: First all partners trade once with their neighbors from the Von Neumann

neighborhood, i.e. with the neighbors above, below, left and right. Afterwards all partners evaluate the

success of their neighbors. As opportunists, they take over the status of the most successful neighbor or

maintain their status when they were better themselves.

In the first generations, the "fraudsters" usually prevail. But then clusters of "naive" or "shrewd" people

form and a wild "battle" begins.

It is true that the "naive" are hard pressed by the "fraudsters". But they do quite well in groups. The

"shrewd" usually prevail over the "fraudsters" - depending on the configuration - and cooperate with the

"naive". In the end, the "shrewd" usually win - but not always. In groups, the "fraudsters" cheat each other

and win nothing, while the "shrewd ones" assert themselves against them and are more successful with the

"naïve behind their backs". The processes depend strongly on how the different behavior is weighted.

Global variables are suitable for evaluating the system, e.g. a "gross national product" as the sum of all

trading points. Observing the sometimes surprising processes provides starting points for discussing ethical

questions. Even if the example cannot, of course, be directly applied to social systems, for most people we

have found a new argument for cooperative social behavior, which is not derived from transcendental or

philosophical considerations, but from efficiency. It is in clear contrast to the egocentricity of primitive Dar-

winism, which often dominates public discussion in this respect. A diagram may serve as an example in

which, on the one hand, the total numbers of the three types of automata (naive, fraudulent, shrewd) were

plotted, and, in addition, the sum of the total trading points achieved by all types, i.e. the "gross national

product", is somewhat thicker in blue. One can see very nicely that "social prosperity" (if one wants to

derive this from the "trading volume") is contrary to the number of "egoists" - of course under the condi-

tions set. Among them, fraudsters usually die out for lack of success, and the naive harmonize magnificently

16 Automata 197

with the shrewd - if they are among themselves. If the behavior is weighted differently, fraudsters can be

quite successful. So, it depends on the rules of the game who succeeds. You should think about them, not

just in a simulation!

From a programming point of view, the system is rather simple, but sometimes extensive due to the change

of viewing direction.

A new automaton can be described by

a list of lists, whereby the automatons

at the grid places correspond to se-

quences of numbers, which contain

on the one hand their state and the

reached trading points, on the other

hand the "memory" about the past

behavior of the neighbors.

16 Automata 198

The cellular automaton can be dis-

played by stamping different colored

costumes (small rectangles) next to

each other on the work area. This has

been changed to the size 800x600 pix-

els before.

Once the machine has been created,

the new generations are created from

the last generation in each case.

The scripts have a very similar structure: all grid locations are iterated.

16 Automata 199

The trade of a cell with its neighbors depends on the one hand on the states of the partial machines, and

on the other hand on their previous behavior. Since this data is stored in the machine values, it is easy to

retrieve. Shown is the trade with the left neighbor:

determine cell

Torus world: the opposite edges

are connected.

find neighboring cell

is the cell cooperating?

save neighbor's behavior "for

later”

if they both cooperate:

profit between 2 and 10,

nothing else

the neighbor is cheated:

profit between 1 and 20

cheat on both of them:

almost no profit

Trade with the other three neighbors is almost the same. The differences are only in the positions of the

stored behavior.

16 Automata 200

Once the values of a generation have been determined, they can be counted and compiled in a list - and

this results in a diagram.

16 Automata 201

16.5 Tasks

1. Develop a finite automaton as a predicate for detection

 a: correct license plates from three different cities.

 b: correct IBAN numbers. You can limit your search to a few banks.

 c: passwords of sufficient complexity. Define beforehand what "sufficiently complex" means.

2. Improve hyphenation by taking into account

 a: double consonants.

 b: typical prefixes.

3. Develop and test a coupled Turing machine,

 a: that copies one group of ones over another (K2).

 b: which pushes one group of ones to the left to another until the groups are separated only by a zero.

 c: which multiplies two natural numbers with each other.

 d: which writes a 1 after two groups of ones, if they are the same length, otherwise a zero.

 e: that subtracts two natural numbers - if that's possible. If she doesn't, she'll go crazy: she'll run away

to the right.

4. a: Replace the trade of all partial automata with the neighbors "per round" by a randomly controlled

process in which machines trade with neighboring (with any) partners.

 b: Replace the Von Neumann neighborhood with a Moore neighborhood.

 c: The machine can easily be converted to an Ising model by considering the machines as spin grids.

Per round, the majority of the neighboring spins tilt the spin in the middle in their direction. There

are various magnetized areas.

5. a: Find out about Stephen Wolfram's linear cellular automata.

 b: Implement the model.

17 Projects 202

17 Projects

17.1 LOGO for the Poor

Level: from middle school Materials: LOGO for the poor

We want to develop a small programming language that we can use to write programs for a turtle - that is,

for every Snap! sprite. The project should show how a text-based language works and how the error mes-

sages are generated. We reduce the problem a little by allowing one-letter commands only. If we look at

the possibilities of the pen used in Snap! and select some of them, we get a possible command set (very

small here):

Mn moves the turtle by the distance of length n in the current direction

Tn rotates the turtle on the spot by n degrees

U lifts the pin

D lowers the pin

We add a control structure to these four commands, here: a loop - and the minimal version of a program-

ming language is ready.

Rn{ drawing commands }

We cast this rough sketch in the form of syntax diagrams: A turtle program consists of a sequence of com-

mands separated by semicolons. The program ends with a double cross sign.

turtle program:

control instruction:

drawing command:

number: natural numbers

Programs are e.g.: D;R4{M100;T90};U#

 M100;T90;M100;T90;M100;T90;M100;T90#

 D;R180{M200;T183};R360{M1;T1}#

We assume that superfluous characters such as spaces are removed from the program first. We can achieve

this, for example, by converting entered lowercase letters into uppercase letters and allowing digits and

the four special characters ";", "#", "{" and "}". All other characters lead to the error message "ERROR 1:

Wrong character in the input!".

control instruction

drawing command

;

;

R { } control instruction number

M

T

U

D

number

number

17 Projects 203

So, we write a simple input

method with character control.

The input must be checked to see

whether it represents a permitted

LOGO program - it is "parsed". In

this case we can develop the par-

ser as a finite automaton75 . The

unspecified transitions lead to an

error state.

75 Why is that, by the way?

Se

;

U v D

S1

;

;

}
M v T

}

;

U v D

{

S4

R

0 v … v 9

0 v 1 v … v 9

S5 S6

S7

0 v 1 v … v 9

S8 S9

S1

0 v … v 9

;

0 v 1 v … v 9

0 v 1 v … v 9 M v T
S0 S2 S3

17 Projects 204

In the individual states we can decide which

signs lead to subsequent states and which do

not. This allows us to indicate which characters

were actually expected in the event of incor-

rect entries. If we number these error mes-

sages of the parser in the order of their occur-

rence, we get the adjacent table. If we also

evaluate the position of the character in the

command where the error occurred, then we

can even display the error.

The translation of the parser consists

only of a very long copy of the state

graph - of nested alternatives. We

only show the first part.

The parser parse <program> is

guided through the state diagram by

the character string of the program. If

there is no permissible transition in a

state, it reports the corresponding er-

ror by the value of the "result" varia-

ble. Correct programs have the value

0 as a result.

state possible error message

S0, S6 2: unknown command

S1, S10 3: <;> or <#> expected

S2, S4, S8 4: number expected

S3 5: number, <;> or <#> expected

S5 6: number or <{> expected

S7 7: <;> or <}> expected

S9 8: Zahl, <;> or <}> expected

 9: unexpected end of input

17 Projects 205

The interpreter run <program> can assume that the entered program is error-free - after all it was parsed.

Therefore, it can take the first character of the program one after the other - this is the next command -

and delete this character. Depending on the command, it executes this and searches for the required pa-

rameters, e.g. the angle of rotation. All processed characters are deleted. This ends when the program

consists only of the last character – the "#".

The program is processed char-

acter by character, the pro-

cessed characters are deleted.

We use the function rest of

from out string library.

PenUp command (U)

PenDown command (D)

gather number

Turn command (T)

Move command (M)

run the loop (R)

search for loop contents until

the next "}"...

... and execute as often as the

number indicates. Append a ";"

to the loop contents.

17 Projects 206

If we output the error messages in

plain text, then our programming lan-

guage will slowly become usable.

We can evaluate programs with a

short script.

We should realize that the definition of this language is purely arbitrary. The body of the loop could also be

enclosed with square brackets, with percent signs or smileys instead of curly brackets, and the fact that

statements are separated by semicolons, but not terminated, also arises only from the current whim. A

program is syntactically "correct", if it corresponds to the language definition, and this again corresponds

to the conceptions of the language developers. It does not follow from generally valid rules.

It is also possible to learn from the error messages. They indicate where an error is noticed, not where it

was made. The indicated error position can therefore lie far behind the actual location of the error.

17 Projects 207

Actually, it is a bit strange to develop a very primitive text-based language in a graphical programming lan-

guage. However, experience shows that learners usually combine the work of computer scientists with the

development of cryptic texts - i.e. they sometimes want to program "really". We can accommodate this

wish if we use such a mini-language in a standard field of computer science, in this case automata theory.

Since we develop it ourselves, we promote understanding for the processing of texts, which takes place on

many levels in IT systems. In addition, we have found a highly differentiating topic suitable for division of

work and challenging activities, which quickly leads to presentable results.

Tasks

1. Expand the language LOGO by

 a: a Home (H) command that sends the turtle to the center of the screen.

 b: a Clear command (C) that clears the screen.

 c: a Color<n> (Fn) command that allows you to select a pen color.

 d: a command TurnTo<angle> (Nn), which rotates the Turtle to a certain angle.

 e: a command MoveTo<x><Y> (Vx,y), which sends the turtle to a certain point.

2. Develop a scanner that allows you to enter the turtle commands in long form, for example, to write

Turn 90 instead of T90. The scanner should recognize these commands and output them again in

short form.

3. Introduce an alternative: Depending on the color of the pixel at the location of the turtle, it should

be possible to execute different command sequences. Reduce the syntax appropriately and imple-

ment the command.

4. Two types of loops are to be introduced in this way: The turtle should execute drawing commands

as long as (WHILE) or until (DO) the turtle is above pixels of a specified color. Allow position-de-

pendent predicates as well.

17 Projects 208

17.2 SnapMinder by Jens Mönig76

Level: high school Materials: SnapMinder

The program is based on data from the Gapminder

Foundation77, which provides tools for visualizing

statistical data on the Internet. One of these shows

the development of the countries in the recent

past, whereby life expectancy is represented above

income and the size of the "bubbles" corresponds

to the total population of the country in one year.

If you move the slider, you can impressively follow

the temporal development of the countries in this

coordinate system. For me, the program is a won-

derful example of how visualization can be used to

identify anomalies in data ("Why does a country

suddenly drop down?" "Why does a country move

in circles?", ...), the causes of which can then be ex-

plored.

The data used - and many others - can be found in

tabular form at https://www.gapminder.org/data/.

Importing Table Data

To import the required data, we load the file into a spreadsheet program and immediately save it again as

a tab-delimited text file. Let us take CO2 emissions per person from 1751 to 201278 as an example. For the

first years we find only a few values, but then it gets dense.

We read the generated text file into a variable via its context menu (import...). To do this, it must be dis-

played in the work area. We get a very long string of characters.

76 With permission of the author, available at snap.berkeley.edu/run#present:Username=jens&Project-
Name=SnapMinder
77 https://www.gapminder.org/
78 CDIAC: Carbon Dioxide Information Analysis Center

https://www.gapminder.org/data/
http://snap.berkeley.edu/run#present:Username=jens&ProjectName=SnapMinder
http://snap.berkeley.edu/run#present:Username=jens&ProjectName=SnapMinder

17 Projects 209

We turn them into a list:

Each line again contains a character string with the

data for each country, whereby the data are sepa-

rated by tabs. Therefore, we "hack" the list line by

line in the same way, but with a different separator,

and add the sublists to a new list variable called

data.

This provides the necessary data for editing in

Snap!.

17 Projects 210

The SnapMinder Data

The program contains the required data as described above in the variables

income data, life data und population data. It prepares them for further use

with the help of higher order list operations79. As an example, we show the

population:

Convert the population data into a list (here in "one step") and throw out

those "without interesting content".

The operations are very compact due to their nesting. If you take them apart, however, they are easy to

understand. As an example, we take the first nested block. It can be read "from behind" as ...

transform data of the existing coun-

tries into a table as discussed above,

discard unusable data ("... no num-

bers") and

assign the result to the population variable.

79 Jens Mönig uses a little trick: If you move the block of a list operation over the join block from the string
operations, which is displayed "empty" , i.e. without input parameters, then it turns into the join input

list-Block , which converts the list into a simple string. The function can also be eas-
ily written by the user.

17 Projects 211

The program starts with three messages that cause old country sprites to

delete themselves and initialize the other objects, especially the data lists.

For the data this causes:

Process the data as described above.
First the income, ...

... then life expectancy, ...

... and extract the countries from it.

Assign the income to the countries.

Same for life expectancy.

Write back the population data from the
auxiliary variable.

Set some variable values.

Extract the years.

Create a list of years as an index.

17 Projects 212

The SnapMinder Countries

At the start of the program as many country clones, repre-

sented by a semitransparent rectangle, are created as countries

are included in the country list. Each clone has its own index idx.

The main function of the countries is to position themselves in

the coordinate system of average income and life expectancy in

relation to the year under consideration. For this ...

… they determine these data for their country, ...

... determine the position ...

... and their size, which is given by the pop-
ulation of the country in the year under
consideration.

This block is called, among other things, when a plot

of the country, i.e. the movement in the coordinate

system with the year as parameter, is generated.

17 Projects 213

Use SnapMinder

The presentation is impressive because, on the one hand, the countries move from bottom left to top right

in the course of time, i.e. they develop positively. But if you take a closer look at some countries, this de-

velopment is by no means continuous: there are abrupt downward swings, backward movements, circles,

periodic movements, ... The program gives rise to research into the causes of these developments, and

there are a few surprises! We show plots of some countries, then you should do research!

 USA Germany

 China India

 Norway Somalia

17 Projects 214

17.3 Connectivity: The World is Small80

Level: high school Materials: Connectivity

The handling of networks is often reduced to protocols and other technical details. But you can also ask

other questions, e.g. about the connection of networks.

• If we have n nodes, how many links do we need for the network to be largely connected?

• Or vice versa: How many and which nodes must be destroyed for a network to break up into its subnets?

• Or: What is the mean distance, counted in links, between the nodes of a network?

Nodes and links can be very different in nature. It can be e.g.

• technical links between computer systems,

• customer/supplier relations in the economy,

• the logical connections via linked websites,

• social relations between persons or groups of persons

• hydrogen bonds in organic compounds,

• neuronal networks

• or infection chains.

80 based on E. Modrow: Informatik mit Delphi – Band 2, emu-online, 2003

17 Projects 215

Random Networks

The starting point for such questions were Random Networks. They are created when we build N network

nodes (or pages, ...) that we subsequently link to each other. Let us take the Internet as an example. If there

are N pages with on average k links per page, then with n mouse-clicks kn pages are accessible. We can

reach virtually any page if it is: kn = N → n = log N / log k. With 5 billion pages and k = 7, n = 11.5, i.e.:

with about 12 mouse clicks on average, you can visit any page of this network. Similar considerations and

practical studies have been carried out on social relations, etc. They can be found under the name Small

World Phenomenon81.

If you display the distribution of links per

page, you get a Poisson distribution for

Random Networks.

It is somewhat more difficult to decide

whether a network is (largely) coherent, i.e.

whether all nodes are connected to each

other. We can answer this question by col-

oring: start with one node and color all the

nodes that can be reached by it in the same

color, then a coherent network shows a kind

of phase transition: almost suddenly all

nodes take on the same color.

You can see that the network - except for a few slips - is coherent if the number of links roughly corresponds

to the number of nodes. Further links do little to change.

81 https://de.wikipedia.org/wiki/Kleine-Welt-Ph%C3%A4nomen

17 Projects 216

Scalefree Networks

Albert-László Barabási82 showed in 2002 that

growing networks like the Internet have a

different distribution of links per node than

Random Networks. It can be described by a

Pareto distribution. Brief descriptions can

be found in

http://barabasi.com/f/623.pdf bzw.

http://barabasi.com/f/624.pdf.

A Scalefree network can be created by alternately adding nodes and links where the new nodes have two

links to existing nodes. The older nodes are more likely to be linked than the younger nodes. Because the

network is always coherent, there is no need to color contiguous nodes. But we want to make the size of

the nodes dependent on the number of their links.

Scalefree networks are the same on all scales, i.e. numerous nodes with few connections are connected to

a few nodes with many connections, so-called hubs. The connections between nodes normally run from

the start node to the next hub, then via a few more hubs to the target node. Hubs can be, for example,

people with many contacts (teachers, representatives, ...), central computers or distribution centers in mer-

chandise management.

Scalefree Networks are extremely robust against technical faults. For example, if a network connection

happens to fail, it probably does not affect a hub, and if it does, other hubs will compensate this. However,

they are also extremely susceptible to targeted interference. If only a few hubs in this network type are

destroyed, the network disintegrates into its individual parts.

The topic is suitable as an introduction to discussions about vaccination protection, preventing the spread

of diseases, influencing political opinion-forming, optimizing the flow of goods, ...

82 A.Barabási: Linked: the new science of networks, Perseus Publishing 2002

17 Projects 217

The Implementation

We want to create a fairly simple model as a tool for research-

ing network properties. It is essentially based on a node from

which clones are generated and two lists, of which the node

list contains the nodes already generated and the link list con-

sists of sub-lists with the numbers of the two end nodes of the

links. With their help, methods can be implemented largely in-

dependently of each other. They are used by the operating el-

ements shown. The controls depend on the selected net type

(random/scalefree) and the display of the nodes (rectangu-

lar/round with different sizes).

Buttons for switching between net types or for creating 10

nodes react to mouse clicks:

Since we often have to iterate over such

node lists, we introduce a new control

structure that executes an instruction for

all objects in a list:

This makes it very easy, for example, to display all nodes:

17 Projects 218

New nodes are created by cloning the

prototype. The prototype can be asked

to perform this action.

A new link is inserted into the network by trying to find two nodes that are not yet connected. The link list

must then be searched to see if the link already exists. If not, the search returns 0. This allows the ends of

the link to be determined. Since the resulting nets are quickly becoming large, the search for them does not

take too long.

17 Projects 219

Once you know which nodes

are to be connected from a

link, ...

... the affected nodes are

searched for, ...

... the costume according to

the net type is selected, and

the nodes are asked to

change to it.

The pen is asked to draw a

line between the nodes.

Finally, the new link is en-

tered in the link list and the

related nodes are colored in

the same way.

With Scalefree Networks it

is a bit easier because the

costumes are chosen ran-

domly.

17 Projects 220

The most complex part is the coloring of the connected subnets. We work with two lists, from which the

connected nodes get all nodes that can be reached from the starting node. The nodes to be colored

contain the nodes that have to be colored – sic.

We start with the given node

number as the beginning and

remember its costume.

As long as there are still nodes

in the list, we examine the link

list to see if the first node num-

ber of the connected nodes

appears in the link either to the

left or right. If so, the other

node is also connected to the

source node and is added to

the list if it is not already in the

list.

If the first node in the list is not

yet contained in the list nodes

to be colored, it is entered

there and removed from the

list of connected nodes.

Finally, the costumes of all

nodes to be colored are set to

the same value as the costume

number of the initial node.

The controls, the two (and further) net types, the creation, joining and coloring of nodes as well as the

diagram creation are based on the sub-lists and can be developed largely independently of each other. The

topic is therefore well suited for teaching in different working groups.

17 Projects 221

17.4 Evolution

Level: high school

Materials: Evolution

The aim of this small project is to pro-

duce a presentable result with the

simplest possible methods, which

can be used in class if required. The

methods, e.g. for the representation

of the animals, are partly found by

"trial and error", which of course

challenges improvements. That's the

way it's supposed to be. The starting

points of the parts are somewhat

highlighted in the pictures.

In the project, "animals" are randomly created, each consisting of 9 rectangles of random size, which are

rotated to create a kind of horse. With a different composition, other "animals" can be quickly produced.

The partial rectangles are always drawn in the same order and orientation, so that you have to try out

where to start drawing. Of course, this problem can be solved more elegantly with some mathematics, and

if parameters can be used to influence how a rectangle is drawn, then it can be done more beautifully - in

a different way. But it can also be done quite simply.

After the production of two animals, four off-

spring are created and shown slightly smaller

below. From these you can choose two and ap-

point them as new parents. If you repeat this,

you can "breed out" certain characteristics,

e.g. small heads or short legs. At each crossing,

the characteristics are changed at random. If a

part becomes too small, it falls away. So, you

can breed something like seals or ostriches out

of the initial horses.

It makes sense to create new parts by muta-

tions or to change the starting point of the

parts, i.e. to let them "migrate". To do this, the

data structures must be changed, for example

by recording the coordinates of the approach

points and adjusting the methods accordingly.

New animals can be created from the object

Animal, which has a local method for this. In

it, the parts of the animal are generated as lists

of "reasonably usable" random numbers. They

are then combined to form the complete list.

17 Projects 222

The parts of the animals are always drawn with the same method show

part. The pen moves to the horizontal position and rotates to the angle

passed as the third element in the list, then draws a rectangle with the

lengths passed as the first and second element. In addition, the starting

point is emphasized somewhat.

The method

show animal

first changes the

size of the animal

as indicated.

Then the parts

are drawn at the

"tried out"

points. Only the

first part of it is

shown.

17 Projects 223

Two animals are "crossed" by randomly assembling the parts of one or the other animal into a new one.

During each of these processes the dimensions are changed randomly - depending on the mutation rate

mr.

Select from which animal a part will

be taken.

Change the width of the part ran-

domly.

Too small parts are removed.

The same, for the height.

Add part to new animal.

Return result.

A new experiment is started by asking the An-

imal object to create two new animals as father

and mother. They'll be crossed.

This is done accordingly with the children.

17 Projects 224

Let us try to breed "jumping ponies" with short tails. First, we create the parents and select candidates for

ponies from the offspring.

Well - evolution is just unfathomable!

17 Projects 225

17.5 Rate Websites: PageRank83

Level: high school

Materials: Page rank

If you know the addresses of websites, you

can reach them directly via the net. But

what happens when we search for pages

with specific content? For this purpose, of

course we use the search engines, which

propose us to certain keywords network ad-

dresses from their tables of contents. These

directories can be created by web crawlers

automatically visiting as many accessible

websites as possible, jumping from link to link, and adding the keywords found there to the table of con-

tents of the search engine. This usually results in extremely extensive address collections for the same key-

word.

Since users of search engines cannot handle large unordered address collections, the pages found for a

keyword must be sorted according to their importance. Users then usually use relatively few addresses that

appear first. The links below are hardly noticed. So at least the commercially operating providers on the net

must be interested in appearing as high up as possible in the lists created by search engines in order to be

found by potential customers at all. They use all tricks to achieve this.

So far, nothing has been said about the meaning of a page's information for the keyword. Just showing up

doesn't mean much. For example, if a page contains the text "Nothing is written here about Goettingen", it

will still be included in the table of contents relating to the keyword "Goettingen". So, we need other eval-

uation criteria. In the simplest case, the authors of a web page enter keywords in the meta tags for the

content of the page: <meta name = "keywords" content = " Snap,School,Computer Science">

However, this possibility is often abused by using frequently used keywords - which do not affect the page

content at all - to direct potential "victims" to the site. Not very helpful is the idea to count how often the

keyword appears on the page. In this case, web pages sometimes contain certain keywords "invisible", e.g.

by writing the keyword very often in white on a white background. Of course, you can also have people rate

websites and enter them in the search directories. But this is a very expensive and relatively slow way to

create directories, and of course such an evaluation is subjective. It is also often difficult to evaluate pages

with special content - e.g. from archaeology. In the worst case, the "value" of a page does not result from

its content, but from the amount paid for the evaluation.

Another way to use the expertise of web authors for the evaluation of web pages on the one hand and to

automate the evaluation process on the other hand is realized in the so-called PageRank procedure. Un-

like the meta tags that evaluate your own website, links from one website to other websites are seen as a

knowledge-based vote by which authors indicate that other websites contain interesting content. If some-

one refers to a page with physical content, the author will most likely understand something about the

content. Moreover, since it is usually not known which other websites refer to their own, web authors can

only manipulate this procedure with difficulty.

83 based on E. Modrow: Technische Informatik mit Delphi, emu-online, 2004

17 Projects 226

The PageRank method does not evaluate all links equally. It determines a rank (the Page-Rank) for each

known website, which describes the "weight" of this page. This rank is divided during the "vote" by links to

all references leading away from the page. If a web page contains only one outbound link, then this receives

the entire weight of the page, if it contains two, the weight is halved, and so on. (If the page does not

contain an outgoing link, it will not take part in the vote. In the PageRank calculation, it returns the value

0.) The rank of a website increases if as many high ranked pages as possible refer to it and if these pages

contain as few links as possible.

As a first example, let's choose two pages that mutually refer to each other.

To calculate the PageRank of page A - PR(A) - we need the PageRank

PR(B) of page B, because a link from B leads to page A. The calculation of

PR(B), however, again includes PR(A). So, we need an old value of PR(A)

to determine the new one. Since this argumentation can be continued, a method must be developed to

reduce the influence of the old values on the calculation of the new rank, so that a stable result is obtained

in the course of the calculations. This is achieved by multiplying the contribution of the incoming links by a

factor d which is less than 1. Since this is included in every calculation, the "very old" PageRanks are multi-

plied by dn, a number that is increasingly approaching zero. For example, you select the value 0.85 for d. If

we designate the times at which the PageRank was calculated in the past as t1, t2, t3, …, whereby a larger

index should mean an earlier time, then for both our web pages we get:

...)(85,0...85,0...))(85,0(...85,0...)(85,0...)(
3321

2 =++=++=+= APRAPRBPRAPR tttt

If page B had more than one outbound link, we would have to divide its rank in the calculation by the

number of links - C(B). We must proceed accordingly with the other sites that have links to page A. If we

call these n web pages T1, T2, …, Tn and replace the three dots in the above relationship with (1-d), then

we get the original formula that was initially given by Google for the page rank calculation:

The rank of a website is at least 0.15. But what influence do the other terms have? We want to clarify the

question with a simulation program in which symbolic web pages can be created and linked. The PageRanks

can be calculated in a "website" created in this way.

In our program, in addition to the buttons shown, which serve to control the functionality, we need the

prototype of a "Page", which (here) should be a website, as well as a global list of all generated pages. Each

page contains a link list with the numbers of the linked pages, a number, a PageRank PR and a help variable

PRnew, in which the newly calculated PageRank is added up. Pages should be able to display themselves

on the screen. Since this changes the

costume, we better operate on a copy

of the current version. A correspond-

ing block can be written quickly.

85,0),
)(

)(
...

)(

)(

)(

)(
()1()(

2

2

1

1 =++++−= d
TC

TPR

TC

TPR

TC

TPR
ddAPR

n

n

page

A

page

B

17 Projects 227

For the display of text and lines on the

sprite we again use the appropriate

graphics library.

The most important task of the proto-

type is to create clones of itself. We

save such a clone in a script variable

result and ask it to perform the oper-

ations that produce the desired result

through a sequence of commands.

The generated page is added to the

page list.

17 Projects 228

In the corresponding mode, pages are

connected by clicking on two pages in

succession. The numbers of the af-

fected pages are stored in two global

variables. Then the first one can be

asked to "link" to the second one. The

Pen draws a line between the sides

that decreases in thickness, a kind of

arrow. (Mutually connected sides

thus maintain a connection almost

the same thickness.) The second page

is inserted into the link list of the first

page.

When recalculating the PageRanks, each page must

distribute its current value to all connected pages.

The page calculates this value and asks all pages of

the link list to increase their auxiliary value PRnew

accordingly.

You can use these auxiliary meth-

ods to calculate the pageranks.

First of all, all auxiliary variables

of the involved pages are set to

zero. Then all pages distribute

their values to the connected

other pages. When this is done,

the auxiliary variables are copied

into the PR variables and the

pages are redrawn with the new

values.

17 Projects 229

We now want to use our simulation pro-

gram. We create two websites, link them

and calculate the PageRanks. You can see

that the values converge towards 1 (inde-

pendent of the initial PageRank, by the

way). This is of course no surprise, because

this is exactly what we intended to achieve

with the introduction of the "damping fac-

tor" of 0.85.

As next example we choose the structure of

a typical homepage with a tree structure,

which starts from an index page and

branches to subdirectories.

We now assume that there are additional

external sites that link to our homepage.

The PageRank of the homepage increases

considerably, also the weight of the internal

pages increases.

17 Projects 230

Finally, we want to assume that the external

pages are again referenced in a link list of

the homepage.

The rank of the homepage continues to rise.

One can see how the importance of the

pages is growing in a network of pages that

mutually refer to one another in order to ex-

press their "respect" for one another.

The PageRank procedure is a technical pro-

cess that can also be transferred to other,

e.g. social systems. 84 However, it quickly

leads to socio-political questions, because

the focus is not on the content of the pages,

but on their structure and functionality.

1. If the result of the PageRank calculation is decisive for the "visibility" of the pages85,

why are commercially oriented private companies allowed to decide on this visibility?

2. The intelligence of the system results from the expertise of those who have consciously

set links in very different areas. Isn't the result actually a public good that should be

available to everyone without some profit (and power) from it?

3. If only the PageRank would be decisive, the search results would always have to be

arranged in the same order. Obviously, this is not the case: the results differ depending

on the person who is looking for. They are filtered according to their interests assumed

by the search engine. In extreme cases, you only get the results that you want to see -

or that someone thinks you want to see - or that someone thinks you should see. The

political consequences (keyword: "echo chambers") are currently under discussion

84 There it even comes from: https://de.wikipedia.org/wiki/PageRank
85 What only appears at the back is practically non-existent on the net.

17 Projects 231

17.6 The Smart Scale

Level: high school Materials: Smart scale

A sensation is looming in the supermarket: the fruit

department has ordered an "intelligent" scale with a

camera that is supposed to recognize and weigh fruit

at the same time. Unfortunately, only the camera is

included, the fruit recognition has to be imple-

mented by yourself. The fruit department gets help

from the scanner cashiers, because they have al-

ready done something similar earlier in this book.

First, we try to find some criteria to distinguish fruits. We draw

an apple, an orange, an apricot, and a banana. The differences

are obvious:

• apple and orange are round, the banana is long

• orange, apricot and banana are orange-yellow, the apple is

(in this case) green

• the apricot is small, the others are bigger

But what do "round", "long", "yellow" and "green", "big"

mean???

We know it, but the computer doesn't. We have to

teach him.

We change the stage size to 800 x 600 pixels and

bring the object with the costumes of the self-

drawn fruit (Drawn fruit) to the center of the stage.

There we ask it to assume the "drawn apple" cos-

tume and stamp it on the stage. After that it should

hide.

We then instruct a Laser to determine the properties of the currently visible fruit. For this purpose, it is to

run across the image from left to right and from bottom to top, similar to the barcode scanner. In doing so,

it measures the size of the object on these routes and calculates the ratio of the results. "Round" objects

should have a ratio close to 1, "long" objects a small value. For "oval" objects, we should actually use mul-

tiple measurement directions. But for now, "oval" means for us "not round and not long".

So that the measurement does not take too long, the laser makes larger steps until it hits the fruit. It then

takes small steps back to the edge of the fruit and remembers its x-position. It does the same at the opposite

edge.

17 Projects 232

The determine horizontal dimensions - block of the La-

ser provides a list with two values: left and right border.

Correspondingly, the determine vertical dimensions -

block lower and upper limit of the object. With these re-

sults we can decide whether an object is round, long or

oval. And we know its size.

The color of the object is still missing. We already know

the limits within which the fruit is located on the stage. We

pass this to a block determine the average color of

In this block, the laser is sent to 5 points on the middle

horizontal, determining the RGB values each time. The

same is done on the mean vertical. After that we deter-

mine the average values of the color channels.

17 Projects 233

With these methods, the Laser can determine

the characteristic properties of a fruit.

Normal fruits have different colors. But our RGB

values can display 256 * 256 * 256 colors, so

16,777,218. That's a little too many. We need a

method to reduce the number of colors.

We try this: for each RGB channel we decide

whether the color value is "high or "low". If it is

high, we set it to 255, otherwise to 0, so we only

get two possible values for each channel, so 2 *

2 * 2 = 8 possible colors. With this procedure

we try out whether we can see anything useful

at all - or not.

It's looking good, isn't it?

So, we can equip the smart Fruit scale with a

method that asks the Laser to determine the

fruit data.

And we can use this result to compare the data with those

of the stored fruits. These are to be present in a variable

fruits, in which the article number, the designation, and

the typical fruit data are stored.

17 Projects 234

It's working!

After these successes the crew of the fruit scale becomes courageous and tries to analyze

real fruit pictures.

17 Projects 235

Their color spaces should also be reduced, similar to

the drawn fruits. Then we get again a color reduced

image on the stage.

We reduce the number of colors as described …

… and stamp

the image on

the stage. After

that we call the

previously de-

veloped fruit

determination

again.

Okay, we should work on the entries of the fruit table as well.

Now you have the full toolbox together for optical fruit determination:

1. Take a picture of a fruit and choose it as the costume of a sprite. You can take pictures with your

smartphone or laptop camera. The background should be white.

2. Reduce the color space of the image.

3. Measure size and shape of the fruit.

4. Measure the mean color of the fruit and reduce it as well.

5. Calculate the color code of the fruit.

The obtained data shape, size and color code can be used as columns of a database table. We will have

three different values each for size and shape as well as 8 possible color codes. This allows us to distinguish

3 * 3 * 8 = 72 fruits. Try a "real" intelligent fruit scale in a department store - we're not that bad.

17 Projects 236

Tasks

1. Create a database table for fruits of the following type:

pnr fruit shape size color code

123 red apple round big 100

223 cherry round small 100

456 banana long big 110

… … … … …

2. Add the table to your database.

3. Write an evaluation method so that it provides the name and price of the fruit. To do this, use database

commands.

4. The color reduction process is very coarse. Come up with a better way.

5. Our fruit recognition process only works well if the fruit is placed in the center of the stage and aligned

horizontally. If we fit a sprite with a fruit picture as a costume, we can center and align the Sprite in the

middle before we print the costume. Implement the procedure.

6. If we use a more detailed color code, we can distinguish more fruits. Would that be progress in any

situation?

7. It could be that the background of the fruit is not white. Can you help?

17 Projects 237

17.7 License Plate Recognition

Level: high school Materials: License plate recognition

The success with the smart scale goes through the

supermarket like a wildfire. It also reaches the se-

curity department. Among other things, it is re-

sponsible for the parking garage. To simplify the

payment of parking fees, the department installs automatic license plate recognition. Registered customers

with a customer card and automatic billing no longer have to stop in front of the parking garage barrier - at

least that's the hope.

Car license plates contain special character sets that facilitate character recognition by computers. In Eu-

rope they have a black border - and that is good for us. So, let's try to determine the numbers on the plate.

(We leave the other characters to you.) Fortu-

nately, we have already realized almost all tools for

our project. All you must do is ask the people at the

smart fruit scale!

We are trying to develop an extremely simple method of license plate recognition. The result is very sensi-

tive to changes in position and size of the license plates. But these disadvantages can be easily corrected by

using a detailed measurement method. Take a look at the exercises!

OCR (Optical Character Recognition) uses complex methods, often with neural networks, to recognize char-

acters. Here we are inventing a simpler procedure that is similar to that of the smart scale. Because all our

marks on the license plate are the same width, we can easily identify them once we have found the bound-

aries of the license plate. With the intelligent scale you can see how this happens. We continue to use their

laser.

We can quickly generate license plates using various generators on the Internet. We save them as costumes

of a sprite License plate. After clicking on the green flag, we stamp the costume onto the stage - as with

the intelligent scale. The relevant area with the digits is then located between -240<x<240 and -40<y<40.

We start by searching the top and bottom of the license plate for lines that do not contain black pixels.

Their positions indicate the upper and lower edge of the relevant characters. Then we search from left to

right for vertical lines with black pixels. When we find the first one, we also have the beginning of the first

character. Then we search for the first vertical line without black pixels. Their x-position is the end of the

first character. We have a "window" with the first sign in it. The next line with black pixels gives the width

of the gap between the characters.

17 Projects 238

With the help of these blocks, we determine the

boundaries of the first digit and the distance to the sec-

ond. Then we draw the circumscribing rectangle in red.

We can now mentally move this window over all characters of the license plate and try to recognize the

characters within the field.

17 Projects 239

The number recognition itself is still

missing. As a starting point we take

the characters with the rectangle

around. We imagine a "sensor field" consisting of three crossing lines. We measure the

colors at the round points. We number the points as shown and look at the results in tab-

ular form. (gray fields: result difficult to predict).

Errors may occur with characters 3, 8 and 9 if the points are not very well adjusted. But that doesn't matter,

because if we move the sensors P2, P3 and P7 a little bit so that they provide clear values, we can even do

without the sensors P1, P2 and P8 (e.g.) and still have a usable code.

A possible layout

for the remaining

sensors would be:

We choose a license plate with all ten characters. The sensors are placed in suitable places (here: (14|24),

...) and stored in a list to read the colors in the character window at the positions and to form a code number

from the colors interpreted as a dual code. When we're done, we transform the code into the right charac-

ter.

char P1 P2 P3 P4 P5 P6 P7 P8 code

0 00100100

1 01111110

2 01101010

3 01011100

01111100

4 11010001

5 00001100

6 0100100

7 01111010

8 00010100

01010100

9 00101100

00101110

char P1 P2 P3 P4 P5 P6 P7 P8 code value

0 10010 18

1 11111 31

2 10101 21

3 11110 30

4 01000 8

5 10110 22

6 00010 2

7 11101 29

8 01010 10

9 10111 23

P8

P4

P1

P2
P3

P5

5

P7
P6

17 Projects 240

Now the security department can ask the laser from their

office in the car park which car has just arrived:

The result is particularly impressive for the advertising department, which immediately sees completely

new applications for the process. Everyone's very proud of the security!

17 Projects 241

Tasks

1. Character recognition in the examples is very simple, but very sensitive to changes in the size and

position of the license plate. Use more sensors to detect the characters more reliably.

2. Extend character recognition to the entire character set for vehicle license plates.

3. Character recognition programs can learn. If the script does not find any recognizable patterns, it

should display its result and ask for the correct character. Save the patterns and the corresponding

characters in a database table. Use queries to identify unknown patterns.

4. If you want to read dirty license plates, you won't find any sharp character boundaries. As a result,

some sensors will produce errors. Improve the results in such cases by determining the "next correct

code" of an incorrect code.

5. The recognition of dirty plates can be improved by convert-

ing the color image to a pure black-and-white image and

closing the gaps caused by the dirt. Find out about suitable

procedures for this purpose and implement one of them.

6. The security department needs a database of license plates and vehicle owners and their status (cus-

tomer, company member, unwanted person, external parker, etc.). Can you help?

7. The license plate recognition turns out to be a great success for the security department. All its mem-

bers are very proud of it and the other members of the company admire the "sheriffs". The advertising

department now wants to use the data from the license plate table to honor customers as VIP cus-

tomers who are frequently and for a long time present in the supermarket. These have special parking

spaces near the elevator. Write a query to find VIP customers.

8. After some time, the VIP parking lots are occupied by pensioners and unemployed. Therefore, the

advertising department extends the criteria for VIP customers by a minimum of turnover with their

purchases. Because almost all customers use credit cards for payment, this is no problem. Improve VIP

customer query accordingly.

9. The advertising department finds that it would be helpful to know not only a customer's turnover but

also what they have bought. If it knows the interests of customers, it can provide them with special

offers and special prices. Determine the additional tables required for this and their columns in the

database. Write suitable queries.

10. The advertising department wants to know whether its advertising activities are successful. Do they

reach customers? Try to answer these questions based on the stored data.

How to … 242

How To …

Topic Chapter

… change the size of the screen areas? 2.3

… resize the stage? 2.3, 9.2, 9.4, 12.1, 15.4, 16.4, 17.6

… change costumes? 2.4.4, 8.1, 9.3, 9.6, 16.2, 17.3, 17.6

… “nail“ sprites on stage“? 4.4

… use loops? 2.4.1, 2.4.4, 3.2, 7.4, 10.1, …

… use alternatives? 2.4.4, 2.4.5, 3.2, …, 16.1, …

… start an animation? 2.3, 2.4.2, 2.4.4, 3.1, 3.2, 4., …

… stop the execution of a script? 3.1

… use character codes? 4.4, 13.2, 16.2, 17.1

… display texts using sprites? 3, 4.4, 6, 7, …

… convert characters to uppercase? 13.2, 16.2, 17.1

… use local variables? 3.1, 3.2, 5, …

… declare script variables? 2.4, 6, 7.2, 10.1, …

… display a variable in a monitor? 4.4, 6, …

… display script variables in a monitor? 6

… change variable values with a slider? 4.5, 7.8, 12.1

… use parallel processes? 2, 3, 4.3, 5, 8.4, 11.3, …

… use lists? 2.4, 3.2, 7, …

… use higher list functions (MAP...OVER...)? 3.2, 3.4, 7.5, 7.8, 8, 9.6, 13.2, 16.2

... plot a diagram? 2.4.5, 5, 16.4

… output text on stage? 4.4

… write your own methods? 2.4.1, …

… differentiate between global and local methods? 2.4, 8, 10.2, 17.4, …

… assign a type to a parameter ? 2, 13.1, …

… create a drop-down list for a parameter? 13.5, 16.3

… find just invisible blocks? 2.4.1

… send messages? 2.4.2, 2.4.4, 3, …, 16.3, …

… access other sprites? 2, 8, …

… call methods of another object? 2.4.3, 8, …

… access attributes of other sprites? 2.4.3, 2.4.4, 5, 8, …

How to … 243

… send a message to specific objects? 3.2, 3.4, …

… send a message to another scene? 3.2

… work with multiple scenes? 2.4.5, 3.2, 3.4

… respond to messages? 3, …

… clone objects? 4.3, 6, 8, …

… copy objects? 4.4, 8, …

… find neighboring objects? 2.4.4, 16.4

… request user input? 4.4, 14.2, 16.2, 16.3, …

… use a drop-down list for user input? 14.2

… export a project? 5

… export global blocks? 5, 12.1

… export a sprite? 5, 10.2, 13.4

… export a costume? 5

… create your own library? 13.1

… copy a script to another sprite? 4.1, 5

… measure time? 4.2, 5

… respond to keystrokes? 5, 10.1, 10,2, 11.4

… run scripts step by step? 6

… use recursion? 7.2, 7.5, 7.6, 9.1, 15.2

… display a table permanently? 7, 13.5

… create new control structures? 7.4, 16.3, 17.3

… use code as data? 7.4, 7.5, 8, 9.6, 10, …

… use hyperblocks? 7.7

… use metaprogramming? 8

… use pre-compiled bocks? 7.8

… merge sprites into an aggregation? 8.3

… speed up the program flow? 2.4.3, 7.2, 7.5, 9.1, …

… access RGB values of pixels? 3.2, 3.4, 9.4, 9.6, …

… use pentrails? 9.1, 9.3

… write JavaScript-functions? 9.4, 9.5, 14.2

… react on colors? 10.1, 10.2, 17.6, 17.7

… produce sounds? 11, 16.2

… play sounds? 11, 16.2

How to … 244

… change sounds? 11, 11.4

… draw transparently? 4.5, 7.8, 9.4, 9.5, 10.2, 12.2

… use an external server? 13.4, 13.5

… import a text file? 13.4, 17.2

… create and use predicates? 14, 16.1

… use a stack? 6, 15

… hide blocks? 16.3

… draw the costume of a sprite in the program? 17.5

Index 245

Index

<attribute> of <a list> 47, 60, 79
<attribute> of <a sprite> 26, 27, 58, 64, 86ff, 96ff
<attribute> of block <a block> 87
<attribute> of costume <a costume> 110
<attribute> of sound <a sound> 138

2D graphic context 115

Abelson, Harold 19
abstraction 18
acceleration component 58
acceleration voltage 144
actor 9, 10, 27, 32
actuator 14
add <value> to <a list> 124
additional criterium 45
address 69, 184, 225
adjacency list 72
adjacency matrix 75
advertising department 240, 241
aggregate function 163
aggregation 94, 100, 243
algorithm 11, 13, 14, 20, 32, 66
algorithmic 14, 17
Alonzo 20
anchor 100
AND 11, 98, 101, 103
animal 183, 221, 222, 223
animated image 81
animation 14, 32, 35, 66, 242
anomaly in data 208
anonymous 20
answer 10ff, 23, 37ff, 44ff, 241
append 70, 79, 153, 156, 158, 181, 191
aquarium 57
archaeology 225
area-filling curve 106
array 75
art 16, 44
artificial intelligence 36
artificial plant 180
ask <a sprite> for <a script> 27, 87, 91, 128
ask <question> and wait 60, 169, 186
assignment 72
assign a type 242
astronomer 37, 38, 39, 40, 41
astrophysicist 37
astrophysics 37
atomic data 69
atomic quantity 47
attached parts 35
attribute 18, 26ff, 46, 86, 91, 161ff, 242
Audio Comp 138
authentication 54, 55

automaton 184, 186, 187, 188, 195, 196, 197
automata theory 207
automated system 12
automatic time announcements 188
automation process 11
autonomous driving 12
auxiliary method 23, 228
average distance 40
averaging 122, 124
axiom 180, 181

background image 31, 33, 57
banking system 11
Barabási, Albert-László 216
bar width 122, 124
barcode 122, 125, 137
 - generator 137
 - scanner 122, 231
basic equation of mechanics 64, 65
Beauty and Joy of Computing 19
bicycle rental station 47
binary tree 85
bioinformatics 154
bistro 32, 35
black and white image 85, 117, 118
blank 11, 90
block 19, 20, 23ff
 - editor 23, 24, 126, 163, 169
 - name 24, 70
Böszörményi, László 106
Borges, Jorge Luis 44
bottom-up 19
Brenner freeway 51
broadcast 37ff
broadcast to <a sprite> 125
browser 19, 20
button 21, 52ff, 67, 68, 93, 103, 123, 125ff, 226
BYOB 20

Caesar encryption 59, 152
Caesar method 59
calculation inaccuracies 146
call 27, 87, 88, 90, 91, 193, 242
camera 17, 20, 126, 137, 231, 235
capacitor 144, 145, 146
car 14, 51, 80, 137
car park 240
carrier pigeon 10
Cartesian product 79
CAS 168
category 9, 21, 24, 46, 161
C-curve 121
cdr 80
cell phone 51

Index 246

cellular automaton 195, 198
certainty 8, 54
chain rule 179
character 7, 10, 49, 60, 69, 122ff
 - code 152
 - recognition 49, 237, 241
 - set 9, 137, 241
charging station 56
check digit 122, 137
check mark 21, 59, 61, 67, 123, 124
checking machine 190
children 16, 18, 24, 34, 183, 223
Chinese room 36
chord 140, 141
ciphertext 59, 152, 157, 159, 160
city map 48
class 18, 19, 46, 88, 221
classification 14
classroom 10, 16, 23, 32, 37
classroom project 23
click 21ff, 45, 68ff, 93, 100, 123, 140, 158ff
client 52, 161
clock 64, 65, 103
clone 18, 23ff, 86ff, 93, 96, 99, 101, 212, 217, 227
 - block 18
 - command 88
cloning 18, 58, 68, 89, 100, 218
code 9, 20, 27, 60ff, 87ff, 122ff, 137, 190, 235ff
coil 144, 146
color
 - change 14, 122
 - code 236
 - counter 128
 - cube 107, 111, 112, 121
 - field 123
 - image 84, 85, 241
 - mixer 61
 - model 61
 - range 84
 - reduction process 236
 - space 107, 108, 235
 - space reduction 132
coloring 215, 220
column 48, 82, 158, 167, 235, 241
<columns> of <a list> 83
combinations 79
combine <a list> using <an operator> 78, 83
command 21ff, 65, 68, 76, 87, 89, 91ff
 - C-shape 76, 193
 - sequence 69, 76, 155, 192, 202
comment 123
communication 7, 8, 10, 11, 16, 27, 37, 42, 55, 125
 - in a given context 31
 - partner 10, 11, 55
 - process 10
 - with a clear question 44
 - with an open question 37
 - without human partner 49

competency 7, 8, 13, 46
computability 190
computer 7ff, 34, 47ff, 137, 157, 161, 188ff
 - algebra 168
 - science 7ff, 16, 19, 20, 46, 59, 161, 207
 - science and society 9, 13, 51, 122
 - scientist 207
 - system 31
concatenation 149
connection 7, 10, 33, 52, 72, 99, 100, 158ff
 - data 162
 - of networks 214
connectivity 214
consequences of automation 12
consonant 186, 201
constructor 14
content area 8, 9, 12, 13
context 9ff, 24ff, 37ff, 53, 61, 68, 87, 91, 145, 183
 - cultural 10
 - menu 23, 59, 63, 69, 76, 84ff, 123ff, 157ff
 - misinterpreted 39
 - missing 12
 - of a sprite 87
 - representation 14
 - shared 9
 - social 10
control
 - data 14
 - instruction 202
 - output 67
 - palette 25, 27, 75, 86, 87, 123
 - structure 19, 25, 75ff, 193, 202, 217, 243
 - value 25
cooperation 63
cooperative behavior 196
coordinate system 29, 58, 208, 212
copy 18, 69, 77, 89, 190, 201
copy of a list 77
copying machine 190
correlation 12, 97
costume 17, 21ff, 56ff, 86, 89, 100ff
 - change 31
 - area 27, 123, 126
 - library 59
counter 95, 96
coupled Turing machine 190, 191, 193, 201
creativity 16
crosshair tool 104
cryptography 14
curriculum 7, 12, 13
customer 31, 32, 53, 214, 241
cut from 109
cutoff-frequency 143

Index 247

Darwinism 196
data 7ff, 20ff
 - exchange 23, 37, 157
 - packet 10
 - point 30
 - source 161
 - stream 14
 - structure 7, 10, 12, 13, 14, 19, 20, 85, 221
 - type 7, 14, 47, 149
 - transferable 39
 - transmitted 41, 52
 - unsorted 70
database 7, 11, 15, 20, 46, 48, 161ff, 235, 236, 241
data-processing system 36
decidability 190
decryption 59, 60
delegation 18, 19, 88, 94, 98
derivative 173, 174, 175, 176, 179
detach from 100
diagram 8, 29, 30, 64, 143, 196, 200, 220, 242
dictionary 47, 85
didactic 7, 8, 12, 13, 31
digital
 - assistant 11
 - circuit 98
 - media 16, 122
 - simulator 98, 100, 103
Dijkstra, Edsger Wybe 5, 72
distance learning 37, 41
distribution of links 216
DNA 6, 154, 155, 156, 167
draggable box 59
dragon curve 121
drawing command 181, 202
drawing program 27, 94
drip painting 115
dummy variable 77
dynamic cloning 18, 88, 93

EAN-8 code 122, 124
echo chamber 12, 45, 230
edge detection 14, 117, 118, 119, 121
editor 24, 27, 32, 67, 68, 104
education 16, 19, 45
electric field 145, 146
electron 144, 147
elementary
 - algorithms 25
 - machines 190, 192
 - magnets 93
 - Turing machines 190
Eliza 42
email address 184
emoticon 10
empty
 - block 63
 - list 69
 - slot 87

encryption 52, 59, 60, 62, 92, 152
ENT practice 143
epidemic 23
ER diagram 161
error 19, 63, 67ff, 127, 156, 170, 204, 241
 - free 205
 - message 161, 202, 206
 - state 184, 203
ethical boundary 12
ethical question 196
evaluation 7, 11, 46, 48, 49, 131, 193, 225, 236
evaluation criterium 44, 225
event 32, 63, 97
evolution 6, 221
exciter 63, 64, 65
experimental approach 44, 63
expert 12, 40
Export blocks ... 63, 114, 151
export... 63, 126, 157
export/import function 29
eye 51, 133, 135

face color 132
face recognition 49, 132
fact 8, 41, 44
feed-forward 102
Fiat-Shamir protocol 54
file 10, 20, 24, 40, 47, 59, 64, 90ff, 138, 151ff
 - contents 47
 - export 40
 - menu 29, 59, 63, 126, 138, 149
 - name 47, 158
filing cabinet 89
final state 184, 190
find first item <a predicate> in <a list> 78
fine arts 45
finite automaton 184, 201, 203
Fiona 89, 90, 91
floating point numbers 179
flow of goods 216
flu 23
footstep 67
for all sprites 23, 25, 63, 149, 169
for each <item> in <a list> 78
for this sprite only 23, 25, 123, 169
force 147
forgetting 97
for-loop 75, 153
framework 7, 12, 13, 14, 17, 32, 55, 61, 63
framework of knowledge 13
free programming environment 19
frequency 11, 62, 64, 65, 103, 142, 143, 157, 159
frequency analysis 157, 159
friction constant 65
function calculator 179
function term 168, 169, 173, 175, 179
functionally programming 168
fuzzy questions 46

Index 248

galaxy 37, 38, 40, 41, 49
Gapminder foundation 208
gate 98, 101, 103
gawking 16
general education 7, 9, 12, 13
generator 103, 106
genetic algorithm 167
get blocks 63
ghost effect 145
GI 7, 8, 13
global
 - block 87, 91
 - method 63, 75, 87
 - variable 25, 27, 49, 50, 54, 59, 69, 72, 196, 228
Google 44, 226
graph 25, 72, 121, 176, 179, 184
graphical
 - representation 32
 - programming environment 17
 - programming language 19, 111, 207
graphics 14, 17, 59, 104, 113, 118, 138
 - editor 27, 32
 - format 32
 - library 227
 - program 17, 32, 123, 126
gravitational force 58
gray ring 27, 77, 78, 87, 91, 152
grayscale image 117, 118
green flag 22, 32, 58ff, 125, 131, 144, 157, 237
greengrocer 31
grid 195, 197
gross national product 44, 196
group work 64
Gundolf de Jong 169, 172, 176, 178

Harvey, Brian 19
hat block 27
head position 190, 191, 192
hearing test 142, 143
Hertz, Heinrich 66
Helmholtz coils 144, 146
hide blocks... 193
hide variable <a variable> 67
high frequency trading 11
higher data structure 75
higher function 40, 83
higher level list operation 77, 79, 210
Hilbert curve 104, 106
Hooke's law 65
HSV color model 110
http server 157, 161
hub 216
human communication 11
human partner 37, 44
human partners 37
hydrogen bond 214
hyperblock 81, 83, 85, 143, 243
hyphenation 186, 201

IBAN number 201
idea 16, 63, 66
identifier 24, 123
image 14, 34, 37ff, 49, 58, 121, 126, 191, 192
 - data 37, 40
 - dimensions 40
 - enhancement 14
 - manipulation 84
 - processing 122
 - recognition 122
 - of scripts 63
immunization 23
implementation 7, 8, 13, 20, 71, 89, 92, 179
import... 157, 208
importance 10, 13, 14, 190, 225, 230
independent process 87
index variable 76
infection 23, 27
infection chain 214
infinite loops 19
influenza epidemic 23
informatics 10, 12, 14, 41
 - concepts 20
 - systems 13, 132
information 7ff, 31ff, 65, 157, 208, 225
 - acquisition 13
 - aspect 12
 - retrieval 12
 - society 7
 - space 45
 - system 11, 17, 31
 - technology 7, 12
 - theory 8
 - transfer scheme 9
 - transport 10
inheritance 18, 88, 94, 98
inherited attribute 18
inherited method 18
initial state 184, 190
initial values 25, 26, 40, 69
input 14, 36, 59, 60, 90ff, 169, 170, 184ff, 210, 243
 - alphabet 186
 - method 203
 - options 163
 - Slot Options 163
instance variable 64
intelligence 12, 36, 73, 230
interesting content 210, 225
Internet 19, 20, 49, 71, 121, 125, 154, 161, 208ff
interpretation 7, 9, 11, 32, 46, 51
interpreter 205
intrapersonal 9
irony 35
Ising model 201
isolated pixels 121
isolated points 118
IT system 12, 13, 16, 37, 44, 161, 207
iterated prisoner's dilemma 195

Index 249

JavaScript 47, 110ff, 118, 121, 139, 170, 243
 - extensions 142
 - function 115, 117
JK-master-slave-flip-flop 103
join 88, 124, 149, 210
JSON 47

keep items <a predicate> from <a list> 78
Kevin 186, 189
key 24, 47, 54, 59, 60, 152, 153, 167
keyboard 140
keystroke 59, 243
keyword 49, 225, 230
knowledge 8ff, 37, 44ff, 83, 111, 144, 166
 - based vote 225
 - gap 8, 11, 13
 - pyramid 8, 9
 - socienty 13, 44
Koch curve 104, 105
Kochel lake 51

labyrinth 97
lambda calculus 20
language definition 169, 206
laptop 52, 53, 235
large left-hand machine 190
large right-hand machine 190
laser 122ff, 232, 233, 237, 240
launch <a script> 87, 90, 100, 101, 141
lava stone garden 56
lawn mower 56
lazy evaluation 169
learning
 - environment 20
 - Pavlovian 95
 - process 18
 - robot 94
learning step 95
LED 98, 102
<length> of <a list> 80
length of text <a string> 60, 149
letter <number> of <a string> 149
Levenshtein distance 167
library 20, 46, 59, 68, 78, 110, 114, 118, 138, 149ff
license plate 14, 49ff, 117, 137, 237, 238, 239, 241
 - number 51
 - recognition 49, 237, 241
Lieberman, Henry 18, 88
Lindenmayer, Aristid 180
line gap 118
line graphics 104
linear cellular automaton 201
linear data structure 13, 14
linked websites 214
link 9, 12, 214, 215, 216, 217, 225, 226, 230
LISP 19, 20

list 13ff, 24ff
 - element 82
 - item 78
 - , nested 47
 - of commands 87
 - of numbers 70
 - operation 81
 - structure 75, 82
 - variable 89
 - like structures 14
local
 - attribute 18, 96
 - list 89
 - method 18, 23ff, 63, 86ff, 125, 126, 128, 221
 - reporter 87
 - variable 25, 33, 58, 65, 71, 86, 93, 98, 144ff
logical
 - circuit 98
 - expression 169
 - value 47, 69
LogIn process 53
LOGO 202, 203, 207
Looks palette 21, 67, 117
loop 27, 38, 70, 76, 123, 167, 202, 205, 206
Lorenz force 147
lowercase 152, 159, 202
L-System 180

machine 8, 9, 11, 46, 48, 51, 190ff
 - learning 12
 - value 199
macro 69
macro language 190, 191
magnet 93
magnetic field 93, 144, 145, 146, 147
magnetic flux density 146
mail address 184, 185
mail server 184
Make a block 23, 149
Make a variable 25, 123
manual 24, 81, 82
map <a script> over <a list> 40ff, 77ff, 117ff, 152
mathematics 66, 173, 221
matrix 75, 76, 82, 83, 85
 - multiplication 81, 83
 - multiplication 83
 - product 82
Mealy automaton 186
meaning 8, 9, 11, 12, 13, 14, 42, 46, 154, 225
measurement 9
media 7, 16, 17, 18, 62, 81
 - competence 16
 - consumption 16
 - education 4, 16
 - environment 17
medium 11
memory area 69
menu bar 21, 22

Index 250

message 7ff, 25ff, 52, 53, 58, 64, 65, 93, 204, 243
meta tag 225
metaphor 44, 45
metaprogramming 87, 243
method 12, 17ff, 49, 73, 87ff, 111ff, 169ff
microphone 20
MIT 19
model 7, 13, 15, 31, 110
modern painting 115
Mönig, Jens 19, 140, 208, 210
monitor 59, 67, 242
Moore neighborhood 201
motion 21, 104
motivation 14, 32, 34, 63
mouse button 158
mouse click 19, 24, 100, 215, 217
mouse-controlled interface 16
mouth 76, 133, 135, 186
move <number> steps 205
Mr. D. 72, 74
multimedia property 14
multiple stages 37
multiplier 23, 27, 30
music 16, 17, 52, 140
mutation rate 223
my <attribute> 27, 86
my <parts> 101

NAND 98, 101, 102, 103
natural constant 147
natural number 77
navigation system 188
neighborhood 118, 196
neighbors 27, 73, 119, 196, 197, 199, 201
nested alternatives 184, 204
network 10, 12, 20, 44, 54, 102, 214ff, 225, 230
network node 215
neural network 12, 214, 237
neuron 95, 96
new block 68ff, 75ff, 123, 124, 149, 159, 188, 193
New category 24, 191
New palette 161
New scene 29
new script 88
node 73, 74, 215, 216, 217, 220
node list 217
node number 220
non-verbal communication 10
north pole 93
nose 133, 135
number 13ff, 47ff, 115, 121, 137, 149ff
number of links 226
numerical
 - effect 148
 - parameter 76
 - value 14, 124

object 18ff, 47, 63, 64, 86ff, 117ff, 211ff, 231, 243
object <an object> 25
object detection 14, 117
object oriented programming (OOP) 18ff, 31, 86ff
ocean sonde 9
OCR (optical character recognition) 237
octagon 127
offspring 221, 224
old stars 41
onClick event 61
opacity 61
open in dialog… 76, 163
operating system 9
operator 163
Operators palette 60, 124, 149, 152
opinion leader 44
opportunist 196
options... 163
OR 101, 103
outbound link 226
output 14, 21ff, 60ff, 88, 98ff, 187, 207, 242
output socket 100
output window 21, 67, 88, 100, 123, 157
overlap length 155, 156
own blocks 22

page list 227
page rank 225, 226, 229, 230
page rank calculation 226, 230
paid ranking 45
palette 18, 23, 24, 69, 86, 104, 137, 161, 193
palindrome 167
parameter 20ff, 69, 75, 87ff, 115, 149, 158ff
parent 18, 24
parent property 18
Pareto distribution 216
parking garage 237
parser 169, 172, 173, 176, 183, 203, 204
parsing 176, 179
partial
 - automaton 201
 - list 47, 81
 - machine 199
parts 100
passport photo 132, 133
password 92, 201
paste on <a sprite> 109
path search 73
patient 42, 43
pause button 22
Peano curve 121
pen 29, 30, 61ff, 101ff, 137, 202, 207, 219, 222ff
Pen palette 29, 107, 138
pen trails 104, 109
PenDown command 205
PenUp command 205
personal data 34
pet food 34

Index 251

phase transition 215
PHP 157, 161
PHPmyAdmin 161
physical computing 14, 20
physical representation 9
physics 61, 63, 65, 66, 144, 147
piano keyboard 140
pivot element 71
pixel graphics 109
pixel list 81, 110, 117, 128
pixels 39ff, 107ff, 198, 207, 231, 237, 243
plain text 206
planet 58, 121
planetary orbit 58
planetary transit 121
plate spacing 145
platitudes 42
play note <number> for <number> beats 140
play sound <a sound> until done 188
playback speed 139
plot sound <a sound> 139
png file 123
Poisson distribution 215
police computer 51
political
 - content 34
 - discourse 12
 - issues 7
 - opinion-forming 216
politician 34
precompiled 40, 84, 85, 117, 119, 243
predicate 23, 78, 85, 94, 96, 169ff, 184, 185, 201
prisoner's dilemma 195
probability of infection 23
problem solving 14, 16, 17, 63
product pride 17
production system 20
professional tool 16
program 11, 18, 19, 23ff
 - crash 19
 - execution 19
 - flow 67
 - sequence 19
programming language 7, 19, 75, 202, 206
project 19ff, 47, 52, 61ff, 125, 126, 144, 157ff
projector 38, 41
pronounce 80, 186, 188, 189
protocol 10, 54, 55, 214
prototype 18, 23ff, 58, 87ff, 218, 226, 227
prover 54
provider 45, 52
psychiatrist 42, 43
purpose 11, 13, 61, 188, 241

query 45, 46, 131, 161, 163, 164, 241
question 10ff, 23, 37ff, 172, 215, 226
queue 13, 75, 85, 89, 92
quicksort 71

random network 215, 216
random number 55, 70, 71, 78, 83
randomness 115, 183
rank of a website 226
ranking 45
rationality 44
real time 81, 84
reasoning 7, 13
received data 9, 10
receiver 9
recipient 34
recursion depth 106, 181
recursive 71, 77, 85, 150, 194
 - curves 105
 - list operations 80
 - operations 169
 - programming 80
red button 22
red mark 19
reference 24, 25, 26, 44, 69, 77, 89, 226
relation 46, 214
relevance 12, 13
remote partner 37
replace item <number> of <a list> with <this> 159
replacing 151
report <this> 77, 150
reporter 23, 43, 87, 89, 91, 149
representation 7ff, 49, 65, 84, 99, 121, 176, 221
reshape <a list> to <dimensions> 79
resonance 66
RGB 40, 49, 61, 107ff, 232, 233, 243
RGB value 40, 110, 117, 129, 232, 233, 243
rhombus 127
right-click 126, 193
ringified 27
robot 20, 56, 94, 95
role 10, 11, 15, 16, 35
rotation center 104
row 75, 76, 82ff, 120, 167
RS-FlipFlop 103
rule system 180, 181
rule 8, 11, 36, 173, 181, 183
rules of the game 197
run 23ff, 55ff, 87ff, 167, 201, 205, 208, 243
run <a script> 22, 87

sample 7, 139, 140, 143
sample rate 139
say <something> for <n> secs 67
scalar product 82, 83
scalefree network 216, 219
scanner 137, 207, 231
scenario 12, 37, 44, 49
scene 29, 37, 38, 39, 40, 52, 53, 243
scene change 52
Scheme 19
school computer science 7, 9, 12
school topic 10

Index 252

schooling 57
SciSnap! 46
Scratch 19, 22, 110
screen 19, 21, 29, 58ff, 136, 147, 163, 191ff
screen coordinate 192
screenshot 44
script 20ff, 50, 60ff
 - area 24, 63, 123
 - variable 26, 124, 129
search engine 11, 45, 225, 230
Searle, John 36
second project 29
secure connection 52
security aspect 53
security check 170
security department 237, 240, 241
select query 164
selection box 24
selection list 162, 163, 169, 193
selection sort 70
self portrait 34
self initialization 58
self reinforcing process 45
semantics 7, 9, 12
sender 9
Sensing palette 25, 26, 27, 64, 123, 169
sensor value 14, 97
separate process 90
separator 184, 186, 187, 188, 190
seroconversion time 23, 27
server 20, 52, 53, 157, 158, 161, 166, 244
 - address 157
 - room 52
set <varname> to <value> 25, 89ff, 123ff, 145, 220
settings 21, 22, 182
settings menu 21, 105, 107, 112, 142, 144, 170
Shannon, Claude 8
shark 57
shortest distance 73
shortest paths 72
show variable <varname> 67
side effect 32, 77
Sierpinski curve 121
signal 95, 98
signed number 179
simulation 10, 19ff, 58, 63, 66, 103, 191, 197, 229
 - data 25
 - program 226
skill 16
slider 21, 61, 67, 84, 121, 144, 208, 242
slider variable 145, 146
small left machine 190
small right machine 190
small world phenomenon 215
smart scale 231, 237
smartphone 16, 19, 137
Snap! 1, 2, 3ff
Snap! screen 21

SnapMinder 208, 210, 212, 213
snowflake curve 105
social
 - consequence 16, 17, 132
 - credit 137
 - issue 7, 137
 - life 16
 - network 16
 - prosperity 196
 - relation 214, 215
 - significance 12
 - system 196, 230
socially relevant issue 12, 34
socio-political question 230
socket 98, 99, 100, 101, 102
sorted data 70
sorting 69, 70, 71
sorting method 85
sound 14, 17, 21, 138ff, 143, , 186, 188, 243, 244
 - files 188
 - named <soundname> 139
 - palette 138
 - program 17
 - recorder 138
Sounds... 138
source code 161
south pole 93
space bar 125, 131, 142
spatula picture 121
special character 23
special offer 241
specialized topic 12
speech bubble 63
spin grid 201
spiral spring 65
split <a string> by <a char> 87, 149, 152, 188
spread of disease 216
spreadsheet program 208
spring constant 65
spring pendulum 63, 64
sprite 18, 21, 24, 56ff, 86ff, 123ff
sprite area 25, 63, 86
sprite coral 100
sprite symbol 100
SQL 11, 46, 48, 161, 163, 164, 166
 - block 166
 - databases 161
 - library 166
 - query 46, 48, 161, 163, 164
 - server 11, 48, 161, 162, 166
 - syntax 46
stack 13, 75, 85, 92, 180, 181, 182, 183, 244
stack operation 181
stage 21ff, 56ff, 99ff, 125, 131ff
several stages 17, 21
stage size 231
Stage size ... 21
standard position 190, 191

Index 253

start node 216
state 9, 13, 17ff, 58, 100, 104, 109, 161, 180ff
 - diagram 184, 195, 204
 - graph 190, 204
 - of data set 14
 - of the receiver 9
static clone 88
statistical data 208
statistics 33, 166
status 9, 26, 27, 196, 241
step size 75
stepping speed 67
stereo sound 140
stock exchange 11
story 7, 10, 12, 14, 31, 32, 35
streaming service 52
string 14, 47, 59, 60, 69, 79, 122, 149ff
structogram 122
structured types 69
sub
 - list 76, 77, 217, 220
 - problem 18, 136
 - routine 19
 - string 150
 - text 9
sun system 58, 121
supermarket 122, 161, 231, 241
Sussman, Gerald and Julie 19
swimmer 33
switch to scene <scene> 37
switch 38, 98, 100, 101
switching time 101, 102, 103
syllable 186, 188, 189
symbol 8, 9, 24, 49
syntax 7, 9, 10, 11, 63, 75, 172, 179, 207
syntax diagram 168, 169, 171, 184, 202

table 14, 25, 48, 76, 122, 161, 167, 204, 210, 225ff
 - data 208
 - of contents 225
 - view 157
tab 21, 209
target node 216
teacher training 16
teacher 7, 16, 216
teaching 7, 8, 12, 16, 32, 220
teaching language 19
teamwork 18
technical
 - competence 7
 - detail 214
 - fault 216
 - fundamental 16
 - issue 7, 11
 - knowledge 7
 - language 32
 - link 214
 - topic 10, 13

television program 44
tell <a sprite> to <a script> 24ff, 87, 90, 125, 146
temperature 9
template 94, 187
text 10ff, 49, 59, 63, 92, 137, 149ff, 225, 227, 242
 - comprehension 10
 - file 157, 208
 - input 60
 - server 157
 - based language 111, 202, 207
 - files 157
the south 44, 45
thread 64, 65
threshold value 95, 117, 118, 121
tile 19, 21, 22
timer 64
timing system 56
title text 193
toll barrier 49, 51
tool 7, 12, 13, 15, 16, 35, 138, 190, 208, 237
tool training 7, 12
top-down 18, 19, 168, 169
torus 119, 199
touch sensor 94, 95, 96
towers of Hanoi 67, 68
trace 104
trading partner 195
trading point 196, 197
trading volume 196
traffic sign 126, 128, 131, 132, 137
training 7, 12, 16
transparency 32, 61, 84, 110, 115ff, 128ff, 145ff
transposed matrix 82, 83
travel literature 44
trial and error 132, 133, 221
trigonometric function 179
troubleshooting 67, 68
truth 8
tube 144, 145
tuple 73, 74
Turbo mode 105
Turing
 - adder 190
 - block 191
 - machine 190
 - tape 190
turn command 205
turtle 180, 181, 182, 202, 207
 - graphics 104, 105
 - program 202
two-dimensional matrix 75
txt file 157

ultrasonic echo 95
ultrasonic sensor 95, 96
UML diagram 98
Unicode 60, 152
unicode <number> as letter 149, 152

Index 254

unicode of <char> 149, 152
university 13, 16
unsorted numbers 78
uppercase 152, 186, 202, 242
url <text> 20, 158
user 11, 12, 45ff, 91, 166, 169, 210, 243
 - data 53
 - interface 60
 - names 184

vaccination protection 216
vacuum cleaner 44
variable 11, 19ff, 47ff, 84ff, 121ff
 - name 61, 67
 - palette 21, 25, 60, 69, 70, 75, 77, 123, 125, 126
vector product 82
vector 83, 147
velocity component 58, 94, 147
verification 51
verifier 54
video image 81
 - surveillance 137
 - telephony 10
Vigenére, Cifrario di 152, 153, 186
Vigenère-Encryption 152
VIP parking 241
Visible stepping 67, 68
visual programming languages 14
visualizability 14
visualization 7, 10, 56, 63, 69, 139, 208
volume 142
von Neumann, John 195, 196
 - neighborhood 195, 201
vowel 186

wait <number> secs 67
wait until <predicate> 67
warp 26, 71, 78, 104, 106, 150
watcher 69
WAV format 138
web
 - author 225
 - crawler 225
 - site 214, 225, 229
weight 95, 226, 229
Weizenbaum, Joseph 42
Wikipedia 8, 44
with inputs 26, 87, 90
Wolfram, Stephen 201
working tape 191

XML file 126, 158
XOR 62, 101, 103
XOR encryption 62

zero knowledge protocol 54
zero position 64, 65

Index 255

